Skip to main content

Advertisement

Log in

The Effect of Albumin Fusion Patterns on the Production and Bioactivity of the Somatostatin-14 Fusion Protein in Pichia pastoris

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Somatostatin is a natural inhibitor of growth hormone, and its analogues are clinically used for the therapy of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndrome. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins, and Pichia pastoris was used as an expression system. Three fusion proteins, (somatostatin (SS)14)2-human serum albumin (HSA), (SS14)3-HSA, and HSA-(SS14)3, were constructed with different fusion copies of somatostatin-14 and fusion orientations. The expression level of (SS14)3-HSA and HSA-(SS14)3 was much lower than (SS14)2-HSA due to the additional fusion of the somatostatin-14 molecule. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard of somatostatin-14, all three fusion proteins were able to inhibit growth hormone secretion in the blood, with (SS14)2-HSA being the most effective one. On the whole, (SS14)2-HSA was the most effective protein in both production level and bioactivity, and increasing the number of small protein copies fused to HSA may not be a suitable method to improve the protein bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Rivier, J., et al. (1973). Science, 179, 77–79.

    Article  CAS  Google Scholar 

  2. Patel, Y. C. (1999). Frontiers in Neuroendocrinology, 20, 157–198.

    Article  CAS  Google Scholar 

  3. Hofland, L. J. (2008). Molecular and Cellular Endocrinology, 286, 199–205.

    Article  CAS  Google Scholar 

  4. Pyronnet, S., Bousquet, C., Najib, S., Azar, R., Laklai, H., & Susini, C. (2008). Molecular and Cellular Endocrinology, 286, 230–237.

    Article  CAS  Google Scholar 

  5. Thermos, K., & Reisine, T. (1988). Molecular Pharmacology, 33, 370–377.

    CAS  Google Scholar 

  6. Olias, G., Viollet, C., Kusserow, H., Epelbaum, J., & Meyerhof, W. (2004). Journal of Neurochemistry, 89, 1057–1091.

    Article  CAS  Google Scholar 

  7. Schonbrunn, A. (2008). Molecular and Cellular Endocrinology, 286, 35–39.

    Article  CAS  Google Scholar 

  8. Patel, Y. C., & Wheatley, T. (1983). Endocrinology, 112, 220–225.

    Article  CAS  Google Scholar 

  9. Lesche, S., Lehmann, D., Nagel, F., Schmid, H. A., & Schulz, S. (2009). Journal of Clinical Endocrinology and Metabolism, 94, 654–661.

    Article  CAS  Google Scholar 

  10. van der Hoek, J., van der Lelij, A. J., Feelders, R. A., de Herder, W. W., Uitterlinden, P., Poon, K. W., et al. (2005). Clinical Endocrinology, 63, 176–184.

    Article  Google Scholar 

  11. Olgac, V., Erbil, Y., Barbaros, U., Oztezcan, S., Giris, M., Kaya, H., et al. (2006). Digestive Diseases and Sciences, 51, 227–232.

    Article  CAS  Google Scholar 

  12. Dou, W. F., Lei, J. Y., Zhang, L. F., Xu, Z. H., Chen, Y., & Jin, J. (2008). Protein Expression and Purification, 61, 45–49.

    Article  CAS  Google Scholar 

  13. Halpern, W., Riccobene, T. A., Agostini, H., Baker, K., Stolow, D., Gu, M. L., et al. (2002). Pharmaceutical Research, 19, 1720–1729.

    Article  CAS  Google Scholar 

  14. Osborn, B. L., Olsen, H. S., Nardelli, B., Murray, J. H., Zhou, J. X., Garcia, A., et al. (2002). Journal of Pharmacol and Experimental Therapeutics, 303, 540–548.

    Article  CAS  Google Scholar 

  15. Gao, Z., Bai, G., Chen, J., Zhang, Q., Pan, P., Bai, F., et al. (2009). Bioscience, Biotechnology, and Biochemistry, 73, 688–694.

    Article  CAS  Google Scholar 

  16. Zhan, J., Chen, Y., Yuan, H. Y., Li, H. and Lu, H. Biotechnology Letters, 34, 417–423.

  17. Zhao, H. L., Xue, C., Wang, Y., Li, X. Y., Xiong, X. H., Yao, X. Q., et al. (2007). Journal of Biotechnology, 131, 245–252.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jian Jin and his colleagues for their technical assistance in fermentation and purification processes. The work is financially supported by the Natural Science Foundation of Jiangsu Province (BK2012104) and the public service platform for science and technology infrastructure construction project of Jiangsu Province (BM2012066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Fan, J., Li, W. et al. The Effect of Albumin Fusion Patterns on the Production and Bioactivity of the Somatostatin-14 Fusion Protein in Pichia pastoris . Appl Biochem Biotechnol 170, 1637–1648 (2013). https://doi.org/10.1007/s12010-013-0304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0304-1

Keywords

Navigation