Skip to main content
Log in

Enhanced Xylose Recovery from Oil Palm Empty Fruit Bunch by Efficient Acid Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh, R. P., Ibrahim, M. H., Esa, N., & Iliyana, M. S. (2010). Reviews in Environmental Science and Biotechnology, 9, 331–344.

    Article  CAS  Google Scholar 

  2. Sreekala, M. S., Kumaran, M. G., & Thomas, S. J. (1997). Applied Polymer Science, 66, 821–835.

    Article  CAS  Google Scholar 

  3. Abdul Khalil, H. P. S., Siti Aiwani, M., & Ridzuan, R. (2008). Polymer-Plastic Technology, 47, 273–280.

    Article  CAS  Google Scholar 

  4. Mohamad, N. L., Mustapa Kamal, S. M., & Liew, A. G. J. (2009). Applied Sciences, 9, 3192–3195.

    Article  CAS  Google Scholar 

  5. Zhang, D., Ong, L. Y., Li, Z., & Wu, J. C. (2010). Chemical Engineering Journal, 181, 636–642.

    Google Scholar 

  6. Arruda, P. V., Rodrigues, R. C., Silva, D. D., & Felipe, M. G. (2011). Biodegradation, 22, 815–822.

    Article  CAS  Google Scholar 

  7. Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Biomass and Bioenergy, 27, 339–352.

    Article  Google Scholar 

  8. Hendriks, A. T. W. M., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  9. Gray, K. A., Zhao, L., & Emptage, M. (2006). Current Opinion in Chemical Biology, 10, 141–146.

    Article  CAS  Google Scholar 

  10. Pienkos, P. T., & Zhang, M. (2009). Cellulose, 16, 743–762.

    Article  CAS  Google Scholar 

  11. Chandel, A. K., Kapoor, R. K., Singh, A., & Kuhad, R. C. (2007). Bioresource Technology, 98, 1947–1950.

    Article  CAS  Google Scholar 

  12. Gamez, S., Cabriales, J. J. G., Ramirez, J. A., Garrote, G., & Vazquez, M. J. (2006). Food Engineering, 74, 78–88.

    Article  CAS  Google Scholar 

  13. Vazquez, M., Oliva, M., Tellez-Luis, S. J., & Ramirez, J. A. (2007). Bioresource Technology, 98, 3053–3060.

    Article  CAS  Google Scholar 

  14. Moutta, R. O., Chandel, A. K., Rodrigues, R. C. L. B., Silva, M. B., Rocha, G. J. M., & Silva, S. S. (2012). Sugar Technology, 14, 53–60.

    Article  CAS  Google Scholar 

  15. Vancov, T., & McIntosh, S. (2012). Applied Energy, 92, 421–428.

    Article  CAS  Google Scholar 

  16. Carvalho, W., Batista, M. A., Canilha, L., Santos, J. C., Converti, A., & Silva, S. S. J. (2004). Chemical Technology and Biotechnology, 79, 1308–1312.

    Article  CAS  Google Scholar 

  17. Boonmanumsin, P., Treeboobpha, S., Jeamjumnunja, K., Luengnaruemitchai, A., Chaisuwan, T., & Wongkasemjit, S. (2012). Bioresource Technology, 103, 425–431.

    Article  CAS  Google Scholar 

  18. Overend, R. P., & Cornet, E. (1987). Philosophical Transactions of the Royal Society of London, 321, 523–536.

    CAS  Google Scholar 

  19. Rahman, S. H. A., Choudhury, J. P., Ahmad, A. L., & Kamaruddin, A. H. (2007). Bioresource Technology, 98, 554–559.

    Article  CAS  Google Scholar 

  20. Choi, C. H., & Oh, K. K. (2012). Bioresource Technology, 110, 349–354.

    Article  CAS  Google Scholar 

  21. Laopaiboon, P., Thani, A., Leelavatcharamas, V., & Laopaiboon, L. (2010). Bioresource Technology, 101, 1036–1043.

    Article  CAS  Google Scholar 

  22. Chirat, C., Lachenal, D., & Sanglard, M. (2012). Process Biochemistry, 47, 381–385.

    Article  CAS  Google Scholar 

  23. Shen, J. C., & Wyman, C. E. (2011). Bioresource Technology, 102, 9111–9120.

    Article  CAS  Google Scholar 

  24. Rahman, S. H. A., Choudhury, J. P., & Ahmad, A. L. (2006). Biochemical Engineering Journal, 30, 97–103.

    Article  CAS  Google Scholar 

  25. Wu, T. Y., Mohammad, A. W., Jahim, J. M., & Anuar, N. J. (2009). Chemical Technology and Biotechnology, 84, 1390–1396.

    Article  CAS  Google Scholar 

  26. Luterbacher, J. S., Tester, J. W., & Walker, L. P. (2010). Biotechnology and Bioengineering, 107, 451–460.

    Article  CAS  Google Scholar 

  27. Won, K. Y., Um, B. H., Kim, S. W., & Oh, K. K. (2011). Korean Journal of Chemical Engineering, 10, 1–7.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to School of Science, Monash University Sunway Campus for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Fong Siow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, H.T., Dykes, G.A., Wu, T.Y. et al. Enhanced Xylose Recovery from Oil Palm Empty Fruit Bunch by Efficient Acid Hydrolysis. Appl Biochem Biotechnol 170, 1602–1613 (2013). https://doi.org/10.1007/s12010-013-0298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0298-8

Keywords

Navigation