Skip to main content
Log in

The Effects of Caffeine Ingestion Before Passive Heat Loading on Serum Leptin Levels in Humans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We assessed the effects of ingesting caffeine before passive heat loading (PHL) on serum leptin and sweating response, which are both physiological responses associated with energy expenditure. The subjects were nine male university students (age, 24.1 ± 3.5 years; height, 173.4 ± 7.6 cm; weight, 69.2 ± 5.7 kg; maximal oxygen consumption, 48.6 ± 4.7 ml ⋅ kg−1 ⋅ min−1). This study used a within-subject, random, crossover design. Tests were performed twice at the same time (2–5 p.m.) at a 1-week interval following 3 mg⋅kg−1 caffeine ingestion (Caff-I) or not (No-Caff). PHL included a half bath in hot water (42 ± 0.5 °C for 30 min) in a thermoneutral climate chamber (25 ± 0.5 °C, 60 ± 3 % relative humidity, <1 m/s air velocity). After PHL, blood levels of leptin and free fatty acids were significantly higher in the Caff-I compared to those in the No-Caff after PHL (P < 0.01). Waist circumference and whole-body sweat loss volume were significantly higher in the Caff-I compared to those in the No-Caff (P < 0.001). Mean active sweat gland density was significantly higher in the Caff-I compared to those in the No-Caff at 10 min during PHL (P < 0.001). The results suggest that ingesting caffeine before PHL is more energy efficient than that of a single PHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PHL:

Passive heat loading

M-ASGD:

Mean activated sweat gland density

W-BSLV:

Whole-body sweat loss volume

WC:

Waist circumference

References

  1. Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 1395, 763–770.

    Article  Google Scholar 

  2. Rabe, K., Lehrke, M., Parhofer, K. G., & Broedl, U. C. (2008). Adipokines and insulin resistance. Molecular Medicine, 214, 741–751.

    Google Scholar 

  3. Hall, J. E., Brands, M. W., Hildebrandt, D. A., Kuo, J., & Fitzgerald, S. (2000). Role of sympathetic nervous system and neuropeptides in obesity hypertension. Brazilian Journal of Medical and Biological Research, 33, 605–618.

    Article  CAS  Google Scholar 

  4. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.

    Article  CAS  Google Scholar 

  5. Rondinone, C. M. (2006). Adipocyte-derivedhormones, cytokines, and mediators. Endocrine, 29, 81–90.

    Article  CAS  Google Scholar 

  6. Bernabucci, U., Basiricò, L., Morera, P., Lacetera, N., Ronchi, B., & Nardone, A. (2009). Heat shock modulates adipokines expression in 3T3-L1 adipocytes. Journal of Molecular Endocrinology, 42, 139–147.

    Article  CAS  Google Scholar 

  7. Lee, J. B., Kim, T. W., Shin, Y. O., Min, Y. K., & Yang, H. M. (2010). Effect of the heat-exposure on peripheral sudomotor activity including the density of active sweat glands and single sweat gland output. Korean J Physiol Pharmacol, 14, 273–278.

    Article  Google Scholar 

  8. Lee, J. B., Bae, J. S., Matsumoto, T., Yang, H. M., & Kim, Y. K. (2009). Tropical Malaysians and temperate Koreans exhibit significant differences in sweating sensitivity to iontophoretically administered acetylcholine. International Journal of Biometeorology, 53, 149–157.

    Article  Google Scholar 

  9. Lee, J. B. (2008). Heat acclimatization in hot summer for ten weeks suppress the sensitivity of sweating in response to iontophoretically-administered acetylcholin. Kor J Physiol Pharmacol, 12, 349–355.

    Article  CAS  Google Scholar 

  10. Lee, J. B., Bae, J. S., Shin, Y. O., Kang, J. C., Matsumoto, T., Toktasynovna, A. A., et al. (2007). Long-term tropical residency diminishes central sudomotor sensitivities in male subjects. Korean J Physiol Pharmacol, 11, 233–237.

    Google Scholar 

  11. Bae, J. S., Lee, J. B., Matsumoto, T., Othman, T., Min, Y. K., & Yang, H. M. (2006). Prolonged residence of temperate natives in the tropics produces a suppression of sweating. Pflügers Archiv, 453, 67–72.

    Article  CAS  Google Scholar 

  12. Ashihara, H., & Crozier, A. (2001). Caffeine: a well-known but little mentioned compound in plant science. Trends in Plant Science, 6, 407–413.

    Article  CAS  Google Scholar 

  13. Kim, T. W., Shin, Y. O., Lee, J. B., Min, Y. K., & Yang, H. M. (2011). Caffeine increases sweating sensitivity via changes in sudomotor activity during physical loading. Journal of Medicinal Food, 14, 1448–1455.

    Article  CAS  Google Scholar 

  14. Kim, T. W., Shin, Y. O., Lee, J. B., Min, Y. K., & Yang, H. M. (2010). Effect of caffeine on the metabolic responses of lipolysis and activated sweat gland density in human during physical activity. Food Sci Biotechnol, 19, 1077–1081.

    Article  CAS  Google Scholar 

  15. Graham, T. E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Medicine, 31, 785–807.

    Article  CAS  Google Scholar 

  16. Graham, T. E., & Spriet, L. L. (1995). Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. Journal of Applied Physiology, 78, 867–874.

    CAS  Google Scholar 

  17. Morera, P., Basiricò, L., Hosoda, K., & Bernabucci, U. (2012). Chronic heat stress up-regulates leptin and adiponectin secretion and expression and improves leptin, adiponectin and insulin sensitivity in mice. Journal of Molecular Endocrinology, 48, 129–138.

    Article  CAS  Google Scholar 

  18. Ozata, M., Ozdemir, I. C., & Licinio, J. (1998). Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. Journal of Clinical Endocrinology and Metabolism, 84, 3686–3695.

    Article  Google Scholar 

  19. Rahmouni, K. (2007). Differential control of the sympathetic nervous system by leptin: implications for obesity. Clinical and Experimental Pharmacology & Physiology. Supplement, 34, S8–S10.

    Article  Google Scholar 

  20. Zhou, Y. T., Wang, Z. W., Higa, M., Newgard, C. B., & Unger, R. H. (1999). Reversing adipocyte differentiation: implications for treatment of obesity. Proceedings of the National Academy of Sciences of the United States of America, 96, 2391–2395.

    Article  CAS  Google Scholar 

  21. Wang, M. Y., Lee, Y., & Unger, R. H. (1999). Novel form of lipolysis induced by leptin. Journal of Biological Chemistry, 274, 17541–17544.

    Article  CAS  Google Scholar 

  22. Rowell, L. B. (1974). Human cardiovascular adjustments to exercise and thermal stress. Physiological Reviews, 54, 75–159.

    CAS  Google Scholar 

  23. Shibasaki, M., Wilson, T. E., & Crandall, C. G. (2006). Neural control and mechanisms of eccrine sweating during heat stress and exercise. Journal of Applied Physiology, 100, 1692–1701.

    Article  Google Scholar 

  24. Rowell, L. B. (1990). Hyperthermia: a hyperadrenergic state. Hypertension, 15, 505–507.

    Article  CAS  Google Scholar 

  25. Harlan, S. M., & Rahmouni, K. (2013). Neuroanatomical determinants of the sympathetic nerve responses evoked by leptin. Clin Auton Res, 23(1), 1–7.

    Article  Google Scholar 

  26. Williams, C. J., Fargnoli, J. L., Hwang, J. J., van Dam, R. M., Blackburn, G. L., Hu, F. B., et al. (2008). Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: a prospective cohort study. Diabetes Care, 31, 504–507.

    Article  Google Scholar 

  27. Zhang, X. J., Li, M., Gao, S., Wang, Y. H., & Liu, S. J. (2012). Relationship between metabolic syndrome and adipokines on diabetes among high-risk populations. Zhonghua Liu Xing Bing Xue Za Zhi, 33, 418–422.

    CAS  Google Scholar 

  28. Bracco, D., Ferrarra, J. M., Arnaud, M. J., Jéquier, E., & Schutz, Y. (1995). Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. American Journal of Physiology, 269, E671–678.

    CAS  Google Scholar 

  29. Astrup, A., Toubro, S., Cannon, S., Hein, P., Breum, L., & Madsen, J. (1990). Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. American Journal of Clinical Nutrition, 51, 759–767.

    CAS  Google Scholar 

  30. Dulloo, A. G., Geissler, C. A., Horton, T., Collins, A., & Miller, D. S. (1989). Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. American Journal of Clinical Nutrition, 49, 44–50.

    CAS  Google Scholar 

Download references

Acknowledgments

We extend our thanks to the subjects whose participation made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Beom Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, TW., Lee, JB. The Effects of Caffeine Ingestion Before Passive Heat Loading on Serum Leptin Levels in Humans. Appl Biochem Biotechnol 171, 1253–1261 (2013). https://doi.org/10.1007/s12010-013-0296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0296-x

Keywords

Navigation