Skip to main content

Advertisement

Log in

Neutral Lipid Content and Biomass Production in Skeletonema marinoi (Bacillariophyceae) Culture in Response to Nitrate Limitation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae are one of the most promising biodiesel feedstocks due to their efficiency in CO2 fixation and high neutral lipid productivity. Nutrient–stress conditions, including nitrogen starvation, enhance neutral lipid content, but at the same time lead to a reduction of biomass. To maximize lipid production in the diatom Skeletonema marinoi, we investigated two different nitrogen starvation approaches. In the first experimental approach, inocula were effectuated in modified f/2 media with decreasing nitrogen concentration, while in the second experiment, nitrate concentration was gradually reduced through a collection/resuspension system in which the culture was periodically collected and resuspended in culture medium with a lower nitrate concentration. In the first approach, the neutral lipid accumulation was accompanied by a strong biomass reduction, as was expected, whereas the second experiment generated cultures with significantly higher neutral lipid content without affecting biomass production. The total proteins and total carbohydrates, which were also quantified in both experiments, suggest that in S. marinoi, neutral lipid accumulation during nutrient starvation did not derive from a new carbon partition of accumulated carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, S.-K., Ravichandran, Y. D., Khan, S. B., & Kim, Y. T. (2008). Biotechnology and Bioprocess Engineering, 13, 511–523.

    Article  CAS  Google Scholar 

  2. Xu, L., Weathers, P. J., Xiong, X.-R., & Liu, C.-Z. (2009). Engineering in Life Sciences, 9, 178–189.

    Article  CAS  Google Scholar 

  3. Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (2008) A look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae (NREL/TP-580-24190)

  4. Pruvost, J., Van Vooren, G., Le Gouic, B., Couzinet-Mossion, A., & Legrand, J. (2011). Bioresource Technology, 102, 150–158.

    Article  CAS  Google Scholar 

  5. Chisti, Y. (2008). Trends in Biotechnology, 26, 126–131.

    Article  CAS  Google Scholar 

  6. Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  7. Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Applied Energy, 88, 1020–1031.

    Article  Google Scholar 

  8. Demirbas, A., & Fatih Demirbas, M. (2011). Energy Conversion and Management, 52, 163–170.

    Article  Google Scholar 

  9. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  10. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). Bioresource Technology, 102, 17–25.

    Article  CAS  Google Scholar 

  11. Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). Applied Microbiology and Biotechnology, 79, 707–718.

    Article  CAS  Google Scholar 

  12. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Current Opinion in Biotechnology, 21, 277–286.

    Article  CAS  Google Scholar 

  13. Hsieh, C. H., & Wu, W. T. (2009). Bioresource Technology, 100, 3921–3926.

    Article  CAS  Google Scholar 

  14. Yu, E. T., Zendejas, F. J., Lane, P. D., Gaucher, S., Simmons, B. A., & Lane, T. W. (2009). Journal of Applied Phycology, 21, 669–681.

    Article  CAS  Google Scholar 

  15. Yeesang, C., & Cheirsilp, B. (2011). Bioresource Technology, 102, 3034–3040.

    Article  CAS  Google Scholar 

  16. Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). Applied Microbiology and Biotechnology, 90, 1429–1441.

    Article  CAS  Google Scholar 

  17. Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011). Bioresource Technology, 102, 123–129.

    Article  CAS  Google Scholar 

  18. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al. (2008). The Plant Journal, 54, 621–639.

    Article  CAS  Google Scholar 

  19. Suen, Y., Hubbard, J. S., Holzer, G., & Tornabene, T. G. (1987). Journal of Phycology, 23, 289–296.

    Article  CAS  Google Scholar 

  20. Roessler, P. G. (1988). Journal of Phycology, 24, 394–400.

    CAS  Google Scholar 

  21. Sarno, D., Kooistra, W. H. C. F., Medlin, L. K., Percopo, I., & Zingone, A. (2005). Journal of Phycology, 41, 151–176.

    Article  Google Scholar 

  22. Leonardos, N., & Lucas, I. A. N. (2000). Aquaculture, 182, 301–315.

    Article  Google Scholar 

  23. Brown, M. R., McCausland, M. A., & Kowalski, K. (1998). Aquaculture, 165, 281–293.

    Article  Google Scholar 

  24. D'Souza, F. M. L., & Loneragan, N. R. (1999). Marine Biology, 133, 621–633.

    Article  Google Scholar 

  25. Guillard, R. R. L. (1975). In M. H. Chanley & W. L. Smith (Eds.), Culture of marine invertebrate animals (pp. 26–60). New York: Plenum.

    Google Scholar 

  26. Guillard, R. R. L., & Ryther, J. H. (1962). Canadian Journal of Microbiology, 8, 229–239.

    Article  CAS  Google Scholar 

  27. Bertozzini, E., Galluzzi, L., Penna, A., & Magnani, M. (2011). Journal of Microbiological Methods, 87, 17–23.

    Article  CAS  Google Scholar 

  28. Sorokin, C. (1980). In J. R. Stein (Ed.), Handbook of phycological methods: culture methods and growth measurements (pp. 321–343). New York: Cambridge University Press.

    Google Scholar 

  29. González-Araya, R., Quéau, I., Quéré, C., Moal, J., & Robert, R. (2011). Aquaculture Research, 42, 710–726.

    Article  Google Scholar 

  30. Peterson, G. L. (1983). Methods in Enzymology, 91, 95–121.

    Article  CAS  Google Scholar 

  31. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  32. Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis (pp. 23–58). New York: Pergamon.

    Google Scholar 

  33. Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Applied Microbiology and Biotechnology, 81, 629–636.

    Article  CAS  Google Scholar 

  34. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). Bioresource Technology, 124, 217–226.

    Article  CAS  Google Scholar 

  35. Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., et al. (2010). Metabolic Engineering, 12, 387–391.

    Article  Google Scholar 

  36. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Bioresource Technology, 100, 833–838.

    Article  CAS  Google Scholar 

  37. Mohammady, N. G. E., Rieken, C. W., Lindell, S. R., Reddy, C. M., Taha, H. M., Lau, C. P. L., et al. (2012). Research Journal of Phytochemistry, 6, 42–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bertozzini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 54 kb)

High Resolution Image

(TIFF 501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertozzini, E., Galluzzi, L., Ricci, F. et al. Neutral Lipid Content and Biomass Production in Skeletonema marinoi (Bacillariophyceae) Culture in Response to Nitrate Limitation. Appl Biochem Biotechnol 170, 1624–1636 (2013). https://doi.org/10.1007/s12010-013-0290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0290-3

Keywords

Navigation