Skip to main content

Advertisement

Log in

Expression Profiling of Bioactive Genes from a Medicinal Plant Nigella sativa L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 28 July 2013

Abstract

Plants respond to stress in part by modulating gene expression either constitutively or in an inducible manner which ultimately leads to the restoration of cellular homeostasis, detoxification of toxins, and recovery of growth. Upon introduction to various elicitors such as pathogen-associated molecular patterns, a massive reprogramming of plant gene expression is initiated. Differential display PCR offers rapid and multiple comparisons of gene expression to various stress durations and intensities. Nigella sativa has acclaimed many medicinal properties in traditional medicine. To explore the underlying molecular mechanisms in response to stress in the plants, Fusarium solani (a fungus) stress was induced at different time intervals ranging from 0 to 48 h. RNA was subjected to complementary DNA (cDNA) synthesis followed by PCR using different sets of anchored primers and arbitrary primers. The expression was visualized after silver staining on urea-PAGE. Out of the 23 upregulated re-amplified cDNA products, ten differential fragments showed significant homologies with domains related to cellular metabolism, signal transduction, and disease resistance. Such genes could be an informative source for developing genetically improved breeds under infectious stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee, S. J., Suh, M. C., Kim, S., Kwon, J. K., Kim, M., Paek, K. H., Choi, D., & Kim, B. D. (2001). Plant Molecular Biology, 46, 661–671.

    Article  CAS  Google Scholar 

  2. Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X., & Harper, J. F. (2002). Plant Physiology, 130, 2129–2141.

    Article  CAS  Google Scholar 

  3. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). PLoS Biology, 9, 100–127.

    Google Scholar 

  4. Dean, R., Kan, J. A. L. V., Pretorius, Z. A., Hammond-kosack, K. E., Pietro, A. D., Spanu, P. D., Rudd, J. J., Dickman, M., Kanmann, R., Ellis, J., & Foster, G. D. (2012). Molecular Plant Pathology, 13, 414–430.

    Article  Google Scholar 

  5. Mittler, R. (2006). Trends in Plant Science, 11, 15–19.

    Article  CAS  Google Scholar 

  6. Jones, H. G., & Schofield, P. (2008). General and Applied Plant Physiology, 34, 19–32.

    Google Scholar 

  7. Paoletti, E., Schaub, M., Matyssek, R., Wieser, G., Augustaitis, A., Bastrup-Birk, A. M., Bytnerowicz, A., Günthardt-Goerg, M. S., Müller-Starck, G., & Serengil, Y. (2010). Environmental Pollution, 158, 1986–1989.

    Article  CAS  Google Scholar 

  8. Schenk, P. M., Kazan, K., Manners, J. M., Anderson, J. P., Simpson, R. S., Wilson, I. W., Somerville, S. C., & Maclean, D. J. (2003). Plant Physiology, 132, 999–1010.

    Article  CAS  Google Scholar 

  9. Thordal-Christensen, H. (2003). Current Opinion in Plant Biology, 6, 351–357.

    Article  CAS  Google Scholar 

  10. Dodds, P. N., & Rathjen, J. P. (2010). Nature Reviews Genetics, 11, 539–548.

    Article  CAS  Google Scholar 

  11. Patel, B. S., Patel, J. C., & Sadaria, S. G. (1996). Indian Journal of Agronomy, 41, 311–314.

    Google Scholar 

  12. D’Antuno, L. F., Moretti, F., & Lovato, F. S. (2002). Industrial Crops and Products, 15, 59–69.

    Article  Google Scholar 

  13. Salem, M. L. (2005). Intl of Immunopharmacology, 5, 1749–1770.

    Article  CAS  Google Scholar 

  14. Goreja, W. G. (2003). Black seed: nature’s miracle remedy (p. 7). New York: Amazing Herbs Press.

    Google Scholar 

  15. Riaz, M., Syed, M., & Chaudhary, F. M. (1996). Hamdard Medicus, 39, 40–45.

    Google Scholar 

  16. Siddiqui, A. A., & Sharma, P. K. R. (1996). Hamdard Medicus, 39, 38–42.

    Google Scholar 

  17. Worthen, D. R., Ghosheh, O., & Crooks, P. A. (1998). Anticancer Research, 18, 1527–1532.

    CAS  Google Scholar 

  18. Denning, D. W., Evans, E. G. V., Kibbler, C. C., Richardson, M. D., Roberts, M. M., & Rogers, T. R. (1997). European Journal of Clinical Microbiology and Infectious Diseases, 16, 424–436.

    Article  CAS  Google Scholar 

  19. Gali-Muhtasib, H., Hilan, C., & Khater, C. (2000). Journal of Ethnopharmacology, 71, 513–520.

    Article  CAS  Google Scholar 

  20. Ghedira, K. (2006). Phytotheraphy, 4, 1–7.

    Google Scholar 

  21. Hilal, A. A., Alia, A. H., El-Shinnawy, S. A., & Shafie, M. (1994). Journal of Applied Sciences, 9, 149–172.

    Google Scholar 

  22. Dubey, R. S. (2005). In M. Pessarakli (Ed.), Handbook of Photosynthesis, vol. 2: photosynthesis in plants under stressful conditions (pp. 717–718). New York: CRC Press.

    Google Scholar 

  23. El-wakil, M. A., & Ghoneem, K. M. (1999). Pakistan Journal of Biological Sciences, 2, 559–564.

    Article  Google Scholar 

  24. Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Critical Reviews in Plant Sciences, 30, 435–458.

    Article  Google Scholar 

  25. Lepka, P., Stitt, M., Moll, E., & Seemuller, E. (1999). Physiological and Molecular Plant Pathology, 55, 59–68.

    Article  CAS  Google Scholar 

  26. Jagoueix-Eveillard, S., Tarendau, F., Guolter, K., Danet, J. L., Bove, J. M., & Garnier, M. (2001). Molecular Plant-Microbe Interactions, 14, 225–233.

    Article  CAS  Google Scholar 

  27. Bhardwaj, P. K., Ahuja, P. S., & Kumar, S. (2010). Molecular Biology Reports, 37, 1003–1010.

    Article  CAS  Google Scholar 

  28. De Luca, V., Capasso, C., Capasso, A., Pastore, M., & Carginale, V. (2011). Molecular Biology Reports, 38, 2998–3000.

    Article  Google Scholar 

  29. Penninckx, I. A., Eggermont, K., Terras, F. R., Thomma, B. P., De Samblanx, G. W., Buchala, A., Métraux, J. P., Manners, J. M., & Broekaert, W. F. (1996). The Plant Cell, 8, 2309–2323.

    CAS  Google Scholar 

  30. Lee, S. C., Lim, M. H., Kim, J. A., Lee, S. I., Kim, J. S., Jin, M., Kwon, S. J., Mun, J. H., Kim, Y. K., Kim, H. U., Hur, Y., & Park, B. S. (2008). Molecules and Cells, 26, 595–605.

    CAS  Google Scholar 

  31. Ray, R., Abhrajyoti, G., Amit, B., Nalok, D., Chattopadhyay, D. J., & Chakrabarti, K. (2011). Physiological and Molecular Plant Pathology, 76, 59–66.

    Article  Google Scholar 

  32. Chomczynski, P., & Mackey, K. (1995). Biotechniques, 19, 942–945.

    CAS  Google Scholar 

  33. Deng, X., Hu, Z. A., & Xinwang, H. (1999). Plant Molecular Biology Reporter, 17, 1–7.

    Article  CAS  Google Scholar 

  34. Song, P., Yamamoto, E., & Allen, R. (1995). Plant Molecular Biology Reporter, 13, 174–181.

    Article  CAS  Google Scholar 

  35. Bushnell, Skadsen W.R., Lewandowski, R.W., Seeland T.S., Krueger, D.E. (2000). Natl. Fusarium Head Blight Forum, p. 129.

  36. Kang, Z., & Buchenauer, H. (2000). Physiological and Molecular Plant Pathology, 57, 255–268.

    Article  CAS  Google Scholar 

  37. Pritsch, C., Vance, C. P., Bushnell, W. R., Somers, D. A., Hohn, T. M., & Muehlbauer, G. J. (2001). Physiological and Molecular Plant Pathology, 5, 1–12.

    Article  Google Scholar 

  38. Liebau, E., Marie-luise, E., Wilson, E. T., Alexandra, S., Peter, F., Rolf, W. D., & Kimberly, H. (2000). Molecular and Biochemical Parasitology, 109, 101–110.

    Article  CAS  Google Scholar 

  39. Zhao, M., Held, I. M., Shian-Jiann, L., & Vecchi, G. A. (2009). GCM Journal of Climate, 22, 6653–6678.

    Article  Google Scholar 

  40. Lievens, S., Goormachtig, S., & Holsters, M. (2001). Nucleic Acids Research, 29, 3459–3468.

    Article  CAS  Google Scholar 

  41. Debouck, C. (1995). Current Opinion in Biotechnology, 6, 597–599.

    Article  CAS  Google Scholar 

  42. Bovie, C., Ongena, M., Thonart, P., & Dommes, J. (2004). Plant Biology, 12, 1–12.

    Google Scholar 

  43. Brenner, S. E., Chothia, C., & Hubbard, T. J. P. (1998). Proceedings of the National Academy of Sciences, 95, 6073–6078.

    Article  CAS  Google Scholar 

  44. Chen, L. S., Qi, Y. P., & Liu, X. H. (2005). Annals of Botany, 96, 35–41.

    Article  CAS  Google Scholar 

  45. Eltayeb, A. E., Kawano, N., Badawi, G., Kaminaka, H., Sanekata, T., Morishima, I., Shibahara, T., Inanaga, T., & Tanaka, K. (2006). Physiologia Plantarum, 127, 57–65.

    Article  CAS  Google Scholar 

  46. Yin, L., Wang, S., Eltayeb, A. E., Uddin, M. I., Yamamoto, Y., Tsuji, W., Takeuchi, Y., & Tanaka, K. (2010). Planta, 231, 609–621.

    Article  CAS  Google Scholar 

  47. Sivak, M. N., & Preiss, J. (1998). In S. L. Taylor (Ed.), Starch: basic science to biotechnology, advances in food and nutrition research (p. 41). San Diego: Academic Press.

    Google Scholar 

  48. Li, J., Ezquer, G., Bahaji, A., Montero, M., Ovecka, M., Baroja-Fernández, E., Munoz, F. J., Mérida, Á., Almagro, G., Hidalgo, M., Sesma, M. T., & Pozueta-Romero, J. (2011). Molecular Plant-Microbe Interactions, 24, 1165–1178.

    Article  CAS  Google Scholar 

  49. Kim, J. Y., Park, S. C., Hwang, I., Cheong, H., Nah, J. W., Hahm, K. S., & Park, Y. (2009). International Journal of Molecular Sciences, 10, 2860–2872.

    Article  CAS  Google Scholar 

  50. Hardham, A. R., Jones, D. A., & Takemoto, D. (2007). Current Opinion in Plant Biology, 10, 342–348.

    Article  CAS  Google Scholar 

  51. Takemoto, D., Yoshioka, H., Doke, N., & Kawakika, K. (2003). Physiologia Plantarum, 118, 545–553.

    Article  CAS  Google Scholar 

  52. Takemoto, D., & Hardham, A. R. (2004). Plant Physiology, 136, 3864–3876.

    Article  CAS  Google Scholar 

  53. Weighardt, F., Biamonti, G., & Riva, S. (1995). Journal of Cell Science, 108, 545–555.

    CAS  Google Scholar 

  54. Lorkovic, Z. J. (2009). Trends in Plant Science, 14, 229–236.

    Article  CAS  Google Scholar 

  55. Yeap, W. C., Namasivayam, T. E. K., Ooi, P., Kulaveerasingam, H., & Ho, C. (2012). Plant Cell Reports. doi:10.1007/s00299-012-1297-x.

    Google Scholar 

  56. Cui, X., Matsuura, M., Wang, Q., Ma, H., & Lambowitz, A. M. (2004). Journal of Molecular Biology, 340, 211–231.

    Article  CAS  Google Scholar 

  57. Rambo, R. P., & Doudna, J. A. (2004). Biochemistry, 43, 6486–6497.

    Article  CAS  Google Scholar 

  58. Senthil, K., Karunanithi, N., Kim, G. S., Nagappan, A., Sundareswaran, S., Natesan, S., & Muthurajan, R. (2011). African Journal of Biotechnology, 10, 16875–16883.

    CAS  Google Scholar 

  59. Paarkh, P. M. (2010). India Journal of Natural Products and Resources, 4, 409–429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Jamil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falak, S., Jamil, A. Expression Profiling of Bioactive Genes from a Medicinal Plant Nigella sativa L.. Appl Biochem Biotechnol 170, 1472–1481 (2013). https://doi.org/10.1007/s12010-013-0281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0281-4

Keywords

Navigation