Skip to main content
Log in

Crude Cellulase from Oil Palm Empty Fruit Bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for Fermentable Sugars Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2 % NaOH with autoclave, which was composed of 59.7 % cellulose, 21.6 % hemicellulose, and 12.3 % lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1 % of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5 % of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33 % and 19.11 %, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5), 355–383.

    Article  CAS  Google Scholar 

  2. Wolfson, W. (2005). Diversa builds a business with designer bacteria. Chemical Biology, 12, 503–505.

    Article  CAS  Google Scholar 

  3. Zhuang, J., Marchant, M. A., Nokes, S. E., & Strobel, H. J. (2007). Economic analysis of cellulase production methods for bio‒ethanol. Applied Engineering in Agriculture, 23(5), 679–687.

    Google Scholar 

  4. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., Blanch, H. W. (2012). Biotechnology and Bioengineering. Wiley Online Library (wileyonlinelibrary.com). doi:10.1002/bit.24370.

  5. Nazir, A., Soni, R., Saini, H. S., Manhas, R. K., & Chadha, B. S. (2009). Purification and characterization of an endoglucanase from Aspergillus terreus highly active against barley â-glucan and xyloglucan. World Journal of Microbiology and Biotechnology, 25, 1189–1197.

    Article  CAS  Google Scholar 

  6. Esterbauer, H., Steiner, W., Labudova, I., & Hermann Hay, A. (1991). Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology, 36, 51–65.

    Article  CAS  Google Scholar 

  7. Nasrin, A. B., Ma, A. N., Choo, Y. M., Mohamad, S., Rohaya, M. H., Azali, A., & Zainal, Z. (2008). Oil palm biomass as potential substitution raw materials for commercial biomass briquettes production. American Journal of Applied Sciences, 5(3), 179–183.

    Article  CAS  Google Scholar 

  8. Jorgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 96, 862–870.

    Google Scholar 

  9. Miller, R. (1999). Structure of Wood; Wood handbook-Wood as an engineering material, FPL-GTR-113. In W. I. Madison (Ed.), Forest products laboratory (p. 463). USA: US Department of Agriculture, Forest Service.

    Google Scholar 

  10. Domínguez, J. M., Cao, N., Gong, C. S., & Tsao, G. T. (1997). Dilute acid hemicelluloses hydrolysates from corn cobs for xylitol production by yeast. Bioresource Technology, 61, 85–90.

    Article  Google Scholar 

  11. Kumar, R., & Wyman, C. E. (2009). Cellulases adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnology and Bioengineering, 103, 252–267.

    Article  CAS  Google Scholar 

  12. Miyamoto, K. (1997). Renewable biological system for alternative sustainable energy production. Food and agriculture organization of United Nations, Bulletin 128. Available from: http://www.fao.org/docrep/w7241e/w7241e00.htm. Accessed on October 10, 2012.

  13. Mathew, G. M., Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2008). Progress in research on fungal cellulase for lignocellulose degradation. Journal of Scientific and Industrial Research, 67, 898–907.

    CAS  Google Scholar 

  14. Wood, T. M., & McCrae, S. I. (1979). Synergism between enzymes involved in the solubilization of native cellulose. Advances in Chemistry Series, 181, 181–209.

    Google Scholar 

  15. Himmel, M. E., Ding, S. Y., Johnson, D. K., Andey, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  16. Umi Kalsom, M. S., Arbakariya, A., & Karim, M. I. A. (1998). Saccharification of pretreated oil palm empty fruit bunch fiber using cellulase of Chaetomium globosum. Journal of Agricultural and Food Chemistry, 46, 3359–3364.

    Article  CAS  Google Scholar 

  17. Abu Bakar, N. K., Abd-Aziz, S., Hassan, M. A., & Ghazali, F. M. (2010). Isolation and selection of appropriate cellulolytic mixed microbial cultures for cellulase production from oil palm empty fruit bunch. Biotechnology, 9(1), 73–78.

    Article  CAS  Google Scholar 

  18. Mandel, M., & Weber, J. (1969). Exoglucanase activity by microorganisms. Advances in Chemical, 95, 391–414.

    Article  Google Scholar 

  19. Goering, H. K., & Van Soest, P. J. (1970). USDA handbook (p. 379). Washington, DC: US Govt Print Office.

    Google Scholar 

  20. Wood, T. M., & Bhat, M. K. (1988). In W. A. Wood & S. T. Kellog (Eds.), Methods for measuring cellulase activities, vol. 160 (pp. 87–112). London: Academic Press Inc.

    Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin-Phenol reagents. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  22. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  23. Latif, F., Ibrahim, M. R., & Kauser, A. M. (1994). Saccharification of Laptochoafusca (Kallar grass straw) using thermostable cellulases. Bioresource Technology, 50(2), 107–111.

    Article  CAS  Google Scholar 

  24. Tong, C. C., & Hamzah, N. M. (1989). Delignification pretreatment of palm‒press fibres by chemical method. Pertanika Journal of Science & Technology, 12(3), 399–403.

    CAS  Google Scholar 

  25. Khaw, T. S., Hassan, M. A., & Ariff, A. (2008). Enzymatic saccharification of pretreated solid palm oil mill effluent and oil palm fruit fiber. Pertanika Journal of Science & Technology, 16(2), 157–169.

    Google Scholar 

  26. Lamptey, J., Moo-Young, M., & Robinson, C. W. (1986). In M. Moo-Young, S. Hasnain, & J. Lamptey (Eds.), Biotechnology and renewable energy. London: Elsevier.

    Google Scholar 

  27. Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). Comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98, 3000–3011.

    Article  CAS  Google Scholar 

  28. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  29. Razak, M. N. A., Ibrahim, M. F., Phang, L. Y., Hassan, M. A., & Abd-Aziz, S. (2012). Utilization of oil palm decanter cake for cellulase and polyoses production. Biotechnology and Bioprocess Engineering, 17, 547–555.

    Article  Google Scholar 

  30. Hanif, A., Yasmeen, A., & Rajoka, M. I. (2003). Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresource Technology, 64, 311–319.

    Google Scholar 

  31. Ahmed, A., & Vermette, P. (2008). Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochemical Engineering Journal, 42, 41–46.

    Article  Google Scholar 

  32. Linggang, S., Phang, L. Y., Wasoh, S. B., & Abd-Aziz, S. (2012). Sago pith residue as an alternative cheap substrate for fermentable sugars production. Applied Biochemistry and Biotechnology, 167, 122–131.

    Article  CAS  Google Scholar 

  33. Ojumu, T. V., Solomon, B. O., Betiku, E., Layokun, S. K., & Amigun, B. (2003). Cellulase production by Aspergillus flavus Linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. African Journal of Biotechnology, 2(6), 150–152.

    CAS  Google Scholar 

  34. Hattaka, A. I. (1983). Biological pretreatment of lignocellulose. Applied Microbiology and Biotechnology, 18, 350–357.

    Article  Google Scholar 

  35. Leu, S. Y., & Zhu, J. Y. (2012). Substrate–related factors affecting enzymatic saccharification of lignocelluloses: Our recent understanding. Bioenergy Research. doi:10.1007/s12155-012-9276-1.

    Google Scholar 

  36. Ramesh, M. V., & Lonsane, B. K. (1987). Solid–state fermentation for production of alpha–amylase. Biotechnology Letters, 9, 323–328.

    Article  CAS  Google Scholar 

  37. Parry, J. B., & Slater, J. H. (1984). Enhanced cellulase production by Aspergillus fumigatus Fresenius. Applied Biochemistry and Biotechnology, 9(4), 403–404.

    Article  Google Scholar 

  38. Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases–production, application and challenges. Journal of Scientific and Industrial Research, 62, 832–844.

    Google Scholar 

  39. Gomathi, D., Muthulakshmi, C., Guru Kumar, D., Ravikumar, G., Kalaiselvi, M., & Uma, C. (2012). Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pacific Journal of Tropical Biomedicine, S67–S73. http://www.apjtb.com/zz/2012s1/14.pdf.

  40. Irfan, M., Irfan, U., Razzaq, Z., Syed, Q., & Nadeem, M. (2011). Utilization of agricultural wastes for carboxymethyl cellulase production from Aspergillus niger in submerged fermentation. IJAVMS, 5(5), 464–471. doi:10.5455/ijavms.20110707123722.

    Google Scholar 

  41. Acharya, P. B., Acharya, D. K., & Modi, H. A. (2008). Optimization for cellulase production by Aspergillus niger using saw dust as substrate. African Journal of Biotechnology, 7(22), 4147–4152. doi:10.5897/AJB08.689.

    CAS  Google Scholar 

  42. Vlaev, S. D., Djejeva, G., Raykovska, V., & Schugerl, K. (1997). Cellulases production by Trichoderma sp. grown on corn fibre substrate. Process Biochemistry, 32(7), 561–565.

    Article  CAS  Google Scholar 

  43. Xinde, J., Anli, G., Ning, H., & Qingbiao, L. (2011). New isolate of Trichoderma viride strain for enhanced cellulytic enzyme complex production. Journal of Bioscience and Bioengineering, 111(2), 121–127.

    Article  Google Scholar 

  44. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Production of cellulases and hemicellulasess by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  45. Chandra, M., Kalra, A., Sharma, P. K., Kumar, H., & Sangwan, R. S. (2010). Optimization of cellulase production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process. Biomass and Bioenergy, 34(5), 805–811.

    Article  CAS  Google Scholar 

  46. Haiyan, S., Xiangyang, G., Zhikui, H., & Ming, P. (2010). Cellulases production by Trichoderma sp. on apple pomance under solid state fermentation. African Journal of Biotechnology, 9(2), 163–166.

    Google Scholar 

  47. Gautam, S. P., Bundela, P. S., Pandey, A. K., Jamaluddin, K., Awasthi, M. K., & Sarsaiya, S. (2010). Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. International Journal of Environmental Sciences, 1(4), 656–665.

    CAS  Google Scholar 

  48. Saqib, A. A. N., Hassan, M., Khan, N. F., & Baig, S. (2010). Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochemistry, 45(5), 641–646.

    Article  CAS  Google Scholar 

  49. Immanuel, G., Bhagavath, C., Raj, P. I., Esakkiraj, P., & Palavesam, A. (2007). Production and partial purification of cellulase by Aspergillus niger and A. fumigatus fermented in coir waste and sawdust. International Journal of Microbiology, 3, 1–20.

    Google Scholar 

  50. Murao, S., Sakamoto, R., & Arai, M. (1988). In W. A. Wood & S. T. Kellong (Eds.), Cellulases of Aspergillus aculeatus, vol. 160. London: Academic Press.

    Google Scholar 

  51. Prasetyo, J., Sumita, S., Okuda, N., & Park, Y. E. (2010). Response of cellulase activity in pH-controlled cultures of the filamentous fungus Acremonium cellulolyticus. Applied Biochemistry and Biotechnology, 162, 52–61.

    Article  CAS  Google Scholar 

  52. Jecu, L. (2000). Solid state fermentation of agricultural wastes for endogluconase production industry. Crop Production, 11, 1–5.

    Article  CAS  Google Scholar 

  53. Sherief, A. A., El-Tanas, A. B., & Atia, N. (2010). Cellulases production by Aspergillus fumigatus grown on mixed substrate of rice straw and wheat bran. Research Journal of Microbiology, 5(3), 199–211.

    Article  CAS  Google Scholar 

  54. Pushalkar, S., Rao, K. K., & Menon, K. (1995). Production of β-glucosidase by Aspergillus terreus. Current Microbiology, 30(5), 255–258.

    Article  CAS  Google Scholar 

  55. Niranjane, A. P., Madhou, P., & Stevenson, T. W. (2007). The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantean. Enzyme and Microbial Technology, 40, 1464–1468.

    Article  CAS  Google Scholar 

  56. Karmakar, M., & Ray, R. R. (2011). Current trends in research and application of microbial cellulase. Research Journal of Microbiology, 6(1), 41–53.

    Article  CAS  Google Scholar 

  57. Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15, 583–620.

    Article  CAS  Google Scholar 

  58. Ahmed, I., Zia, M. A., & Iqbal, H. M. N. (2010). Bioprocessing of proximally analyzed wheat straw for enhanced cellulase production through process optimization with Trichoderma viride under SSF. International Journal of Biological and Life Sciences, 6(3), 164–170.

    Google Scholar 

  59. Jiang, X., Geng, A., He, N., & Li, Q. (2011). New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. Journal of Bioscience and Bioengineering, 111, 121–127.

    Article  CAS  Google Scholar 

  60. Kovacs, K., Megyeri, L., Szakacs, G., Christian, P. K., Mats, G., & Guido, Z. (2008). Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme and Microbial Technology, 43, 48–55.

    Article  CAS  Google Scholar 

  61. Shahriarinour, M., Wahab, M. N. A., Mustafa, S., Mohamad, R., & Ariff, A. (2011). Effect of various pretreatments of oil palm empty fruit bunch fibres for subsequent use as substrate on the performance of cellulase production by Aspergillus terreus. BioResources, 6(1), 291–307.

    CAS  Google Scholar 

  62. Zhiyou, W., Wei, L., & Shullin, C. (2004). Production of cellulase by Trichoderma reesei from dairy manure. Bioresource Technology, 96(4), 491–499.

    Google Scholar 

  63. Maeda, R. N., Serpa, V. I., Rocha, V. A. L., Mesquita, R. A. A., Santa Anna, L. M. M., de Castro, A. M., Drimeier, C. E., Pereira, N., Jr., & Polikarpov, I. (2010). Enzymatic saccharification of pretreated sugars cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulase. Process Biochemistry, 46(5), 1196–1201.

    Article  Google Scholar 

  64. Harhangi, H. R., Steenbakkers, P. J. M., Akhmanova, A., Jetten, M. S. M., Van der Drift, C., & Op den Camp, H. J. M. (2002). A highly expressed family 1 β-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. BBA – Gene Structure and Expression, 1574(3), 293–303.

    Article  CAS  Google Scholar 

  65. Duff, S. J. B., & Murray, W. D. (1996). Bioceonversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology, 55, 1–33.

    Article  CAS  Google Scholar 

  66. Divne, C., Stahlberg, J., Reinikainen, T., & Jones, T. A. (1998). High-resolution crystal structures reveal how a cellulose chain bound in the 50Å long tunnel of cellobiohydrolase from Trichoderma reesei. Journal of Molecular Biology, 275, 309–325.

    Article  CAS  Google Scholar 

  67. Ferdousi, B., Nurul, A., & Shah Alam, M. (2009). Purification and characterization of extracellular cellulase from A. oryzae ITCC-4857.01. Journal of Applied Sciences Research, 5(10), 1645–1651.

    Google Scholar 

  68. Abd-Aziz, S., Hassan, M. A., Ismail, M. S., Sarbini, R., Ibrahim, M. F., Razak, M. N. A., Abu Bakar, N. K., Phang, L. Y. (2011). Crude cellulase cocktail for lignocellulosic materials degradation. Patent pending: PI2011002674.

Download references

Acknowledgments

The authors express their thanks for a National Science Fellowship (NSF) from the Ministry of Science, Technology, and Innovation (MOSTI), Malaysia, and AlafPutra Biowealth Sdn Bhd for financial support. We gratefully acknowledge all members of the Environmental Biotechnology Research Group, Universiti Putra Malaysia, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abd-Aziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, M.F., Razak, M.N.A., Phang, L.Y. et al. Crude Cellulase from Oil Palm Empty Fruit Bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for Fermentable Sugars Production. Appl Biochem Biotechnol 170, 1320–1335 (2013). https://doi.org/10.1007/s12010-013-0275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0275-2

Keywords

Navigation