Skip to main content
Log in

Parametric Study on the Enrichment of Immunoglobulin from Milk by Foam Fractionation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Foam fractionation is a promising method for separation and concentration of biochemicals. It is simple, easily scalable, inexpensive, and environment friendly. Foam fractionation thus represents an alternative to the traditional methods used for immunoglobulin enrichment. However, little, if any, literature exists documenting the utilization of foam fractionation in the enrichment of immunoglobulins. Milk were utilized as an immunoglobulin source to serve as examples of a real system in this study. The investigation examined the effects of varying five different process parameters: the initial pH value, the initial concentration of immunoglobulin, the nitrogen flow rate, the column height, and the foaming time. Experimental results demonstrated that immunoglobulin could effectively be enriched from milk by foam fractionation. The maximum enrichment ratio with pretreatment (using pH 4.6 precipitation) was 6.30 along with a more than 92 % recovery for IgG and an enrichment ratio of 5.1 with 85 % recovery for IgM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hilpert, H., Brussow, H., & Mietens, C. (1987). Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants. Journal of Infectious Diseases, 156(1), 158–166.

    Article  CAS  Google Scholar 

  2. Zeitlin, L., Cone, R. A., Moench, T. R., & Whaley, K. J. (2000). Preventing infectious disease with passive immunization. Microbes and Infection, 2(6), 701–708.

    Article  CAS  Google Scholar 

  3. Lilius, E. M., & Marnila, P. (2001). The role of colostral antibodies in prevention of microbial infections. Current Opinion in Infectious Diseases, 14(3), 295–300.

    Article  CAS  Google Scholar 

  4. Kelly, G. S. (2003). Bovine colostrums: a review of clinical uses. Alternative Medicine Review, 8(4), 378–394.

    Google Scholar 

  5. Stephan, W., Dichtelmuller, H., & Lissner, R. (1990). Antibodies from colostrum in oral immunotherapy. Journal of Clinical Chemistry and Clinical Biochemistry, 28(1), 19–23.

    CAS  Google Scholar 

  6. Donovan, S. M., & Odle, J. (1994). Growth factors in milk as mediators of infant development. Annual Review of Nutrition, 14, 147–167.

    Article  CAS  Google Scholar 

  7. Korhonen, H. (1998). Colostrum immunoglobulins and the complement system-potential ingredients of functional foods. Bulletin of the International Dairy Federation, 336, 36–40.

    Google Scholar 

  8. Birch, J. R., & Racher, A. J. (2006). Antibody production. Advanced Drug Delivery Reviews, 58, 671–685.

    Article  CAS  Google Scholar 

  9. Holschuh, K., & Schwammle, A. (2005). Preparative purification of antibodies with protein A-an alternative to conventional chromatography. Journal of Magnetism and Magnetic Materials, 293, 345–348.

    Article  CAS  Google Scholar 

  10. Ahmad, S. I. (1975). Laws of foam fractionation I. The effect of different operating parameters on the foam fractionation of albumin from a solution containing organic and inorganic materials. Separation Science and Technology, 10(6), 673–688.

    Article  CAS  Google Scholar 

  11. Uraizee, F., & Narsimhan, G. (1996). Effects of kinetics of adsorption and coalescence on continuous foam concentration of proteins: comparison of experimental results with model predictions. Biotechnology and Bioengineering, 51(4), 384–398.

    Article  CAS  Google Scholar 

  12. Robertson, G. H., & Vermeulen, T. (1969). Foam fractionation of rare health elements. Lawrence Livermore Lab. [Rep.] UCRL-19525.

  13. Maas, K. (1974). Adsorptive bubble separation techniques. In F. Korte (Ed.), Methodicum chimicum (Vol. 1, pp. 165–171). New York: Academic Press.

    Google Scholar 

  14. Grieves, R. B. (1975). Foam separations: a review. Chemical Engineering Journal, 9(2), 93–106.

    Article  CAS  Google Scholar 

  15. London, M., Cohen, M., & Hudson, P. B. (1954). Some general characteristics of enzyme foam fractionation. Biochimica et Biophysica Acta, 13, 111–120.

    Article  CAS  Google Scholar 

  16. Varley, J., & Ball S. K. (1994). In: D. L. Pyle (Ed.), Foam separation for enzyme recovery: Maintenance of activity (pp. 525–531). Sep. Biotechnol. 3. Cambridge: University of Reading.

  17. Grieves, R. B., & Bhattacharyya, D. (1970). Foam fractionation rates. Separation Science, 5, 583–601.

    Article  CAS  Google Scholar 

  18. Kishimoto, H. (1962). Foam separation of surface-active substances. Kolloid-Zeitschrift & Zeitschrift für Polymere, 192(1–2), 66–101.

    Google Scholar 

  19. Schnepf, R. W., & Gaden, E. L. (1959). Foam fractionation of proteins—concentration of aqueous solutions of bovine serum albumin. Biotechnology and Bioengineering, 1(1), 1–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Chih Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YC., Parlar, H. Parametric Study on the Enrichment of Immunoglobulin from Milk by Foam Fractionation. Appl Biochem Biotechnol 170, 1589–1601 (2013). https://doi.org/10.1007/s12010-013-0272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0272-5

Keywords

Navigation