Skip to main content
Log in

Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films Against Food Spoilage Microorganisms in Conjunction with Pediocin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Han, J. H. (2000). Food Technology, 54, 56–65.

    Google Scholar 

  2. Cooksey, K. (2005). Food Additives and Contaminants, 22, 980–987.

    Article  CAS  Google Scholar 

  3. Weng, Y. M., Chen, M. J., & Chen, W. (1999). Lebensmittel-Wissenschaft und Technologie, 32, 191–195.

    CAS  Google Scholar 

  4. Padgett, T., Han, I. Y., & Dawson, P. L. (1998). Journal of Food Protection, 61, 1330–1335.

    CAS  Google Scholar 

  5. Hoffman, K. L., Han, I. Y., & Dawson, P. L. (2001). Journal of Food Protection, 64, 885–889.

    CAS  Google Scholar 

  6. Burt, S. (2004). International Journal of Food Microbiology, 94, 223–253.

    Article  CAS  Google Scholar 

  7. Marathe, R. (2008) M.Sc thesis, Rutgers, The State University of New Jersey

  8. Pranoto, Y., Rakshit, S. K., & Salokhe, V. M. (2005). LWT, 38, 859–865.

    Article  CAS  Google Scholar 

  9. Hitokoto, H., Morozumi, S., Wauke, T., Sakai, S., & Kurata, H. (1980). Applied and Environmental Microbiology, 39, 818–822.

    CAS  Google Scholar 

  10. Farag, R. S., Daw, Z. Y., Hewedi, F. M., & El-Baroty, G. S. A. (1989). Journal of Food Protection, 52, 665–667.

    CAS  Google Scholar 

  11. Pinto, E., Vale-Silva, L., Cavaleiro, C., & Salguiero, L. (2009). Journal of Medical Microbiology, 58, 1454–1462.

    Article  Google Scholar 

  12. Pol, I. E., & Smid, E. J. (1999). Letters in Applied Microbiology, 29, 166–170.

    Article  CAS  Google Scholar 

  13. Gonzalez, S. L., Vargas, M., Martinez, C. G., Chiralt, A., & Chafer, M. (2011). Food Engineering Reviews, 3, 1–16.

    Article  Google Scholar 

  14. Ettayebi, K., Yamani, J. E., & Rossi-Hassani, B. D. (2000). FEMS Microbiology Letters, 183, 191–195.

    Article  CAS  Google Scholar 

  15. Jin, T., & Zhang, H. (2008). Journal of Food Science, 73, 127–134.

    Article  Google Scholar 

  16. Nonsee, K., Supitchaya, C., & Thawien, W. (2011). International Food Research Journal, 18, 1531–1541.

    CAS  Google Scholar 

  17. Narayanan, A., & Ramana, K. V. (2012). Biotechnology, 2, 287–296.

    Google Scholar 

  18. Smith-Palmer, A., Stewart, J., & Fyfe, L. (1998). Letters in Applied Microbiology, 26, 118–122.

    Article  CAS  Google Scholar 

  19. Galet, V. M., Lopez- Carbello, G., Gavara, R., & Hernandez- Munor, P. (2012). International Journal Food Microbiology, 157, 239–244.

    Article  Google Scholar 

  20. Patil, M. M., Pal, A., Anand, T., & Ramana, K. V. (2010). India Journal Biotechnology, 9, 166–172.

    CAS  Google Scholar 

  21. Neera, Patil M.M., Ramana K.V and Bawa A.S. (2013). Journal of Food Processing and Preservation 7, 179–187.

  22. Kim, C. H., Ji, G. E., & Ahn, C. (2000). Food Sciences Biotechnology, 58, 400–405.

    Google Scholar 

  23. CEN 2004.EN 13130-1: Materials and articles in contact with foodstuffs—plastics substances subject to limitation—part 1: Guide to test methods for the specific migration of substances from plastics to foods and food simulants and the determination of substances in plastics and the selection of conditions of exposure to food simulants. CEN, Brussels.

  24. Olcay, A. (1968). Communications. De La Facullte Des Sciences De L’Universite D’Ankara.

  25. Appendini, P., & Hotchkiss, J. H. (2002). Innovation Food Science Emerging Technology, 3, 113–126.

    Article  CAS  Google Scholar 

  26. Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Journal of Food Science, 68, 408–420.

    Article  CAS  Google Scholar 

  27. Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Journal of Applied Microbiology, 86, 985–990.

    Article  CAS  Google Scholar 

  28. Ultee, A., Gorris, L. G. M., & Smid, E. J. (1998). Journal of Applied Microbiology, 85, 211–218.

    Article  CAS  Google Scholar 

  29. Kalemba, D., & Kunicka, A. (2003). Current Medicinal Chemistry, 10, 813–829.

    Article  CAS  Google Scholar 

  30. Jung, D. S., Bodyfelt, F. W., & Daeschel, M. A. (1992). Journal of Dairy Science, 75, 387–393.

    Article  CAS  Google Scholar 

  31. Ghalfi, H., Benkerroum, N., Doguiet, D. D. K., Bensaid, M., & Thonart, P. (2006). Letters in Applied Microbiology, 44, 268–273.

    Article  Google Scholar 

  32. Maizura, M., Fazilah, A., Norziah, M. H., & Karim, A. A. (2007). Journal of Food Science, 72, 1–7.

    Article  Google Scholar 

  33. Go´mez-Estaca, J., Lo´pez de Lacey, A., Lo´pez-Caballero, M. E., Go´mez-Guille´n, M. C., & Montero, P. (2010). Food Microbiology, 27, 889–896.

    Article  Google Scholar 

  34. Perez, C., Gonzalez, R., Rodriguez, C.A., Rodriguez, B.J.R., Oretaga, V.F. (2006) Adv. Agri. Food Biotechnol. pp. 193–216.

Download references

Acknowledgments

The authors would like to thank Dr. H.V. Batra, Director, and Dr. V.A. Sajeevkumar, Defence Food Research Laboratory, Mysore, India, for their kind help and encouragement during the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karna Venkata Ramana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanan, A., Neera, Mallesha et al. Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films Against Food Spoilage Microorganisms in Conjunction with Pediocin. Appl Biochem Biotechnol 170, 1379–1388 (2013). https://doi.org/10.1007/s12010-013-0267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0267-2

Keywords

Navigation