Skip to main content

Advertisement

Log in

The Effect of Biomass Immobilization Support Material and Bed Porosity on Hydrogen Production in an Upflow Anaerobic Packed-Bed Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of the support material used for biomass attachment and bed porosity on the potential generation of hydrogen gas in an anaerobic bioreactor treating low-strength wastewater. For this purpose, an upflow anaerobic packed-bed (UAPB) reactor fed with sucrose-based synthetic wastewater was used. Three reactors with various support materials (expanded clay, vegetal coal, and low-density polyethylene) were operated for hydraulic retention time (HRT) of 0.5 and 2 h. Based on the results obtained, three further reactors were operated with low-density polyethylene as a material support using various bed porosities (91, 75, and 50 %) for an HRT of 0.5 h. The UAPB reactor was found to be a feasible technology for hydrogen production, reaching a maximum substrate-based hydrogen yield of 7 mol H2 mol−1 sucrose for an HRT of 0.5 h. The type of support material used did not affect hydrogen production or the microbial population inside the reactor. Increasing the bed porosity to 91 % provided a continuous and cyclic production of hydrogen, whereas the lower bed porosities resulted in a reduced time of hydrogen production due to biomass accumulation, which resulted in a decreasing working volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hammed, A., & Gondal, M. A. (2005). Journal of Molecular Catalysis A: Chemical, 233, 35–41.

    Article  Google Scholar 

  2. Junbo, Z., Kuisheng, W., Huitang, S., & Shaobo, W. (2004). International Journal of Hydrogen Energy, 29, 1393–1396.

    Article  Google Scholar 

  3. Wang, J. L., & Wan, W. (2009). International Journal of Hydrogen Energy, 34, 799–811.

    Article  CAS  Google Scholar 

  4. Wang, Y.-Y., Ai, P., Hu, C.-X., & Zhang, Y.-L. (2011). International Journal of Hydrogen Energy, 36, 390–396.

    Article  CAS  Google Scholar 

  5. Fan, Y., Li, C., Lay, J. J., Hou, H., & Zahng, G. (2004). Bioresource Technology, 91, 189–193.

    Article  CAS  Google Scholar 

  6. Kim, D. H., Han, S. K., Kim, S. H., & Shin, H. S. (2006). International Journal of Hydrogen Energy, 31, 2158–2169.

    Article  CAS  Google Scholar 

  7. Mu, Y., Yu, H. Q., & Wang, G. (2007). Enzyme and Microbial Technology, 40, 947–953.

    Article  CAS  Google Scholar 

  8. Maintinguer, S. I., Fernandes, B. S., Duarte, I. C. S., Saavedra, N. K., Adorno, M. A. T., & Varesche, M. B. (2008). International Journal of Hydrogen Energy, 33, 4309–4317.

    Article  CAS  Google Scholar 

  9. Zhu, H., & Béland, M. (2006). International Journal of Hydrogen Energy, 31, 1980–1988.

    Article  CAS  Google Scholar 

  10. Leite, J. A. C., Fernandes, B. S., Pozzi, E., Barboza, M., & Zaiat, M. (2008). International Journal of Hydrogen Energy, 33, 579–586.

    Article  CAS  Google Scholar 

  11. Fernandes, B. S., Peixoto, G., Albrecht, F. R., Saavedra del Aguila, N. K., & Zaiat, M. (2010). Energy for Sustainable Development, 14, 143–148.

    Article  CAS  Google Scholar 

  12. Wu, S. Y., Lin, C. N., Chang, J. S., Lee, K. S., & Lin, P. J. (2002). Biotechnology Progress, 18, 921–926.

    Article  CAS  Google Scholar 

  13. Lee, K. S., Lo, Y. S., Lo, Y. C., Lin, P. J., & Chang, J. S. (2003). Biotechnology Letters, 25, 133–138.

    Article  CAS  Google Scholar 

  14. Kawagoshi, K., Hino, N., Fujimoto, A., Nakao, M., Fujita, Y., Sugimura, S., & Furukawa, K. (2005). Journal of Bioscience and Bioengineering, 100, 524–530.

    Article  CAS  Google Scholar 

  15. Steven, W., van Ginkel, V., & Logan, B. (2005). Water Research, 39, 3819–3826.

    Article  Google Scholar 

  16. Chang, F., & Lin, C. (2004). International Journal of Hydrogen Energy, 29, 33–39.

    Article  CAS  Google Scholar 

  17. Amorim, E. L. C., Barros, A. R., Damianovic, M. H. R. Z., & Silva, E. L. (2009). International Journal of Hydrogen Energy, 34, 783–790.

    Article  Google Scholar 

  18. Ren, N.Q., Ding, J., Wang, A.J., Ding, L., Wu, Y.N. (2005). In Proceedings of the 10th World Congress of Anaerobic Digestion, Montreal, Canada, 773–778.

  19. Silva, A. J., Hirasawa, J. S., Varesche, M. B., Foresti, E., & Zaiat, M. (2005). Anaerobe, 12, 93–98.

    Article  Google Scholar 

  20. Del Nery, V. (1987). M.Sc. Dissertation. Engineering School of São Carlos, University of São Paulo, Brazil. (in Portuguese).

  21. Stenerson, K. (2004). Analysis of permanent gases. The Reporter, 3(1), 3.

    Google Scholar 

  22. Moraes, E.M., Adorno, M.A.T., Zaiat, M., Foresti, E. (2000). Report of the Latin-American Workshop and Seminar of Anaerobic Digestion, Recife, Brazil, p. 146–149. (in Portuguese).

  23. Dubois, M., Gillees, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  24. Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G., & Bailey, M. J. (2000). Applied and Environmental Microbiology, 66, 5488–5491.

    Article  CAS  Google Scholar 

  25. Nielsen, T. A., Liu, W. T., Filipe, C., Grady, L., Molin, S., & Stahl, D. A. (1999). Applied and Environmental Microbiology, 65, 1251–1258.

    CAS  Google Scholar 

  26. Muyzer, G., Waal, E. C., & Uitterlinden, A. G. (1993). Applied and Environmental Microbiology, 59, 695–700.

    CAS  Google Scholar 

  27. Vanio, E. J., & Hantula, J. (2000). Mycological Research, 104, 927–936.

    Article  Google Scholar 

  28. Gomes, N. C. O., Fagbola, R., Costa, N. G., Rumjanek, A., Buchner, L., Mendonca-Hagler, & Smalla, K. (2003). Applied and Environmental Microbiology, 69, 3758–3766.

    Article  CAS  Google Scholar 

  29. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  30. Khanal, S. K., Chen, W. H., Li, L., & Sung, S. (2004). International Journal of Hydrogen Energy, 29, 1123–1131.

    CAS  Google Scholar 

  31. Stronach, S. M., Rudd, T., & Lester, J. N. (1986). Anaerobic digestion processes in industrial wastewater treatment. Berlin, Germany: Springer.

    Book  Google Scholar 

  32. Mohan, V. S., Bhaskar, V. Y., & Sarm, P. N. (2007). International Journal of Hydrogen Energy, 32, 2286–2295.

    Article  CAS  Google Scholar 

  33. Liu, X., Zhu, Y., & Yang, S. T. (2005). Enzyme and Microbial Technology, 38, 521–528.

    Article  Google Scholar 

  34. Tamburini, E., León, A. G., Perito, B., & Mastromei, G. (2003). Environmental Microbiology, 5, 730–736.

    Article  CAS  Google Scholar 

  35. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E. (2006). The Prokaryotes. In: S. Brisse, F. Grimont, P.A.D. Grimont. The Genus Klebsiella. v. 6, chapter 3.3.8 (p. 159–196). New York.

  36. Rainey, F.A., Hollen, B.J., Small, A. (2007). In: Bergey’s Manual of Systematic Bacteriology—vol. 3—The Firmicutes, 2nd edn. Springer, New York. pp. 738–828.

  37. Hung, C. H., Lee, K. S., Cheng, L. H., Huang, Y. H., Lin, P. J., & Chang, J. S. (2007). Journal of Applied Microbiology and Biotechnology, 75, 693–701.

    Article  CAS  Google Scholar 

  38. Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T. (1994). In: Bergey’ s Manual of Determinative Bacteriology, 3th edn. Williams & Wilkins, Baltimore.

  39. Yokoi, H., Aratake, T., Hirose, J., Hayashi, S., & Takasaki, Y. (2001). World Journal of Microbiology & Biotechnology, 17, 609–613.

    Article  CAS  Google Scholar 

  40. Fang, H. H. P., Li, C., & Zhang, T. (2006). International Journal of Hydrogen Energy, 31, 683–692.

    Article  CAS  Google Scholar 

  41. Bowman, K. S., Moe, W. M., Rash, B. A., Bae, H. S., & Rainey, F. A. (2006). FEMS Microbiology Ecology, 58, 120–133.

    Article  CAS  Google Scholar 

  42. Zhang, Z. P., Adav, S. S., Show, K. Y., Tay, J. H., Liang, D. T., Lee, D. J., & Su, A. (2008). Biotechnology and Bioengineering, 101, 926–936.

    Article  CAS  Google Scholar 

  43. Minamisawa, K., Nishioka, K., Miyaki, T., Ye, B., Miyamoto, T., & You, M. (2004). Applied and Environmental Microbiology, 70, 3096–3102.

    Article  CAS  Google Scholar 

  44. Wang, A., Ren, N., Shi, Y., & Lee, D. J. (2008). International Journal of Hydrogen Energy, 33, 912–917.

    Article  CAS  Google Scholar 

  45. Hata, J., Miyata, N., Kim, E. S., Takamiza, K., & Iwahori, K. (2004). Journal of Bioscience and Bioengineering, 97, 196–201.

    CAS  Google Scholar 

  46. Lueders, T., Pommerenke, B., & Friedrich, M. (2004). Applied and Environmental Microbiology, 70, 5778–5786.

    Article  CAS  Google Scholar 

  47. Sugita, T., & Nakase, T. (1999). Systematic and Applied Microbiology, 22, 79–86.

    Article  CAS  Google Scholar 

  48. Suh, S. O., McHugh, J. V., Pollock, D. D., & Blackwell, M. (2005). Mycological Research, 109, 261–265.

    Article  CAS  Google Scholar 

  49. Kurtzman, C. P., & Robnett, C. J. (2003). FEMS Yeast Research, 3, 417–432.

    Article  CAS  Google Scholar 

  50. Cai, J., Roberts, I. N., & Collins, M. D. (1996). International Journal of Systematic Bacteriology, 46, 542–549.

    Article  CAS  Google Scholar 

  51. Ueda-Nishimura, K., & Mikata, K. (2000). Microbiology, 146, 1045–1051.

    CAS  Google Scholar 

  52. Arnold, J. L., Knapp, J. S., & Johnson, C. L. (2000). Water Research, 34, 3699–3708.

    Article  CAS  Google Scholar 

  53. Wyder, M. T., Bachmann, H. P., & Puhan, Z. (1999). Lebensmittel-Wissenschaft & Technologie, 32, 333–343.

    CAS  Google Scholar 

  54. Boxma, B., de Graaf, R. M., van der Staay, G. W. M., van Alen, T. A., Ricard, G., Gabaldon, T., van Hoek, A. H. A. M., Moon-van der Staay, S. Y., Koopman, W. J. H., van Hellemond, J. J., Tielens, A. G. M., Friedrich, T., Veenhuis, M., Huynen, M. A., & Hackstein, J. H. P. (2005). Nature, 434, 74–79.

    Article  CAS  Google Scholar 

  55. Cheng, Q., Sanglard, D., Vanhanen, S., Liu, H. T., Bombelli, P., Smith, A., & Slabas, A. R. (2005). Biochimica et Biophysica Acta, 1735, 192–203.

    Article  CAS  Google Scholar 

  56. Hackstein, J.H.P. (2004). Eukaryotic Fe-hydrogenases—old eukaryotic heritage or adaptive acquisitions? International Hydrogenases Conference.

Download references

Acknowledgments

This work was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zaiat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, B.S., Saavedra, N.K., Maintinguer, S.I. et al. The Effect of Biomass Immobilization Support Material and Bed Porosity on Hydrogen Production in an Upflow Anaerobic Packed-Bed Bioreactor. Appl Biochem Biotechnol 170, 1348–1366 (2013). https://doi.org/10.1007/s12010-013-0262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0262-7

Keywords

Navigation