Skip to main content
Log in

Microbial Transformation of Curcumin to Its Derivatives with a Novel Pichia kudriavzevii ZJPH0802 Strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Curcumin, a polyphenolic compound, has shown a wide range of pharmacological activities and has been widely used as a food additive. However, the clinical use of curcumin is limited to some extent because of its poor water solubility and low bioavailability. To overcome these problems, many approaches have been attempted and structural modification of curcumin by microbial transformation has been proven to be an alternative. In this study, we isolated a novel yeast strain Pichia kudriavzevii ZJPH0802 from a soil sample, which is capable of converting curcumin to its derivatives. The transformed products by this strain were evaluated by HPLC, (+) electrospray ionization (ESI)-MSn, and 1H nuclear magnetic resonance methods. Compared with controls, two new peaks of the transformed broth appeared at retention times of 26 min (I) and 62 min (II) by HPLC analysis. The two transformed products were then further identified by (+) ESI-MSn. The spectrum showed that compound I had an accurate [M+H+NH3]+ ion at m/z 392, [M+H]+ ion at m/z 375, [M+H–H2O]+ ion at m/z 357, and (+) ESI-MS3 spectrum showed that ion at m/z 357 could further form fragment ions at m/z 339, 177, and 163; compound II had an accurate [M+H]+ ion at m/z 373, [M+H–H2O]+ ion at m/z 355, and (+) ESI-MS3 spectrum showed that ion at m/z 355 could further form fragment ions at m/z 219, 179, 177, 163, and 137. These two transformed products thereby were confirmed as hexahydrocurcumin (I) and tetrahydrocurcumin (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin, J. K., Pan, M. H., & Lin Shiau, S. Y. (2000). Recent studies on the biofunctions and biotransformations of curcumin. BioFactors, 13, 153–158.

    Article  CAS  Google Scholar 

  2. Kaminaga, Y., Nagatsu, A., Akiyama, T., Sugimoto, N., Yamazaki, T., Maitani, T., et al. (2003). Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Letters, 555, 311–316.

    Article  CAS  Google Scholar 

  3. Maehara, S., Ikeda, M., Haraguchi, H., Kitamura, C., Nagoe, T., Ohashi, K., et al. (2011). Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa. Chemical & Pharmaceutical Bulletin, 59, 1042–1044.

    Article  CAS  Google Scholar 

  4. Ratanajiajaroen, P., Watthanaphanit, A., Tamura, H., Tokura, S., & Rujiravanit, R. (2012). Release characteristic and stability of curcumin incorporated in β-chitin non-woven fibrous sheet using Tween 20 as an emulsifier. European Polymer Journal, 48, 512–523.

    Article  CAS  Google Scholar 

  5. Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4, 807–818.

    Article  CAS  Google Scholar 

  6. Niu, Y. M., Wang, X. Y., Chai, S. H., Chen, Z. Y., An, X. Q., & Shen, W. G. (2012). Effects of curcumin concentration and temperature on the spectroscopic properties of liposomal curcumin. Journal of Agricultural and Food Chemistry, 60, 1865–1870.

    Article  CAS  Google Scholar 

  7. Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., et al. (2008). Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochemical Pharmacology, 76, 1590–1611.

    Article  CAS  Google Scholar 

  8. Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., et al. (2009). Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorganic & Medicinal Chemistry, 17, 2623–2631.

    Article  CAS  Google Scholar 

  9. Bajpai, V. K., Kang, S. C., Heu, S., Shukla, S., Lee, S., & Beak, K. H. (2010). Microbial conversion and anticandidal effects of bioconverted product of cabbage (Brassica oleracea) by Pectobacterium carotovorum pv. carotovorum 21. Food and Chemical Toxicology, 48, 2719–2724.

    Article  CAS  Google Scholar 

  10. Faramarzi, M. A., Zolfaghary, N., Yazdi, M. T., Adrangi, S., Rastegar, H., Amini, M., et al. (2009). Microbial conversion of androst-1,4-dine-3,17-dione by Mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives. Journal of Chemical Technology and Biotechnology, 84, 1021–1025.

    Article  CAS  Google Scholar 

  11. Zhang, X., Ye, M., Li, R., Yin, J., & Guo, D. A. (2010). Microbial transformation of curcumin by Rhizopus chinensis. Biocatalysis and Biotransformation, 28, 380–386.

    Article  CAS  Google Scholar 

  12. Bharti, Nagpure, A. A. L., & Gupta, R. K. (2011). Biotransformation of curcumin to vanillin. Indian Journal of Chemistry, 50B, 1119–1122.

    CAS  Google Scholar 

  13. Herath, W., Ferreira, D., & Khan, I. A. (2007). Microbial metabolism. Part 7: curcumin. Natural Product Research, 21, 444–450.

    Article  CAS  Google Scholar 

  14. Pan, M. H., Huang, T. M., & Lin, J. K. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metabolism and Disposition, 27, 486–494.

    CAS  Google Scholar 

  15. Pfeiffer, E., Hoehle, S. I., Walch, S. G., Riess, A., Solyom, A. M., & Metzler, M. (2007). Curcuminoids from reactive glucuronides in vitro. Journal of Agricultural and Food Chemistry, 55, 538–544.

    Article  CAS  Google Scholar 

  16. Somparn, P., Phisalaphong, C., Nakornchai, S., Unchern, S., & Morales, N. P. (2007). Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biological & Pharmaceutical Bulletin, 30, 74–78.

    Article  CAS  Google Scholar 

  17. Sugiyama, Y., Kawakishi, S., & Osawa, T. (1996). Involvement of the β-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochemical Pharmacology, 52, 519–525.

    Article  CAS  Google Scholar 

  18. Murugan, P., & Pari, L. (2006). Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats. Life Sciences, 79, 1720–1728.

    Article  CAS  Google Scholar 

  19. Gong, J. S., Lu, Z. M., Shi, J. S., Dou, W. F., Xu, H. Y., Zhou, Z. M., et al. (2011). Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus—Fusarium oxysporum H3. Applied Biochemistry and Biotechnology, 165, 963–977.

    Article  CAS  Google Scholar 

  20. Pires, M. N., & Seldin, L. (1997). Evaluation of Biolog system for identification of strain of Paenibacillus azotofixans. Antonie Van Leeuwenhoek, 71, 195–200.

    Article  CAS  Google Scholar 

  21. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  22. Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9, 299–306.

    Article  CAS  Google Scholar 

  23. Jiang, H. L., Timmermann, B. N., & Gang, D. R. (2006). Use of liquid chromatography-electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome. Journal of Chromatography A, 1111, 21–31.

    Article  CAS  Google Scholar 

  24. Jiang, H. L., Somogyi, A., Jacobsen, N. E., Timmermann, B. N., & Gang, D. R. (2006). Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 1001–1012.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the National Natural Science Foundation of China (30873366) and the Foundation of Key Developing Discipline of Pharmacy of Zhejiang Province (grant no. 20100610), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Huang, J., Wo, X. et al. Microbial Transformation of Curcumin to Its Derivatives with a Novel Pichia kudriavzevii ZJPH0802 Strain. Appl Biochem Biotechnol 170, 1026–1037 (2013). https://doi.org/10.1007/s12010-013-0256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0256-5

Keywords

Navigation