Skip to main content
Log in

Biotransformation of Chloro-Substituted Indoles to Indigoids by Phenol Hydroxylase from Arthrobacter sp. W1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant Escherichia coli cells expressing phenol hydroxylase (designated as strain PHIND) were used to synthesize chloro-substituted indigoids by the transformation of indoles. The optimal conditions for the biotransformation of 4- and 7-chloroindole were determined by response surface methodology. Biotransformation kinetic assays revealed that strain PHIND showed high catalytic efficiency for 4- and 7-chloroindole. The formation rate of 7,7′-dichloroindigo (1.35 unit/mg cell dry weight) by strain PHIND was 1.14-fold higher than that of 4,4′-dichloroindigo. The intermediates of 7-chloroindole biotransformation were identified by high-performance liquid chromatography–mass spectroscopy, and the biotransformation mechanism was also proposed. These results suggested that there was a potential application of strain PHIND in the biotransformation of chloro-substituted indoles to valuable indigoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Doukyu, N., Toyoda, K., & Aono, R. (2003). Applied Microbiology and Biotechnology, 60, 720–725.

    CAS  Google Scholar 

  2. Hoessel, R., Leclerc, S., Endicott, J. A., Nobel, M. E., Lawrie, A., Tunnah, P., Leost, M., Damiens, E., Marie, D., Marko, D., Niederberger, E., Tang, W., Eisenbrand, G., & Meijer, L. (1999). Nature Cell Biology, 1, 60–67.

    Article  CAS  Google Scholar 

  3. Guengerich, F. P., Sorrells, J. L., Schmitt, S., Krauser, J. A., Aryal, P., & Meijer, L. (2004). Journal of Medicinal Chemistry, 47, 3236–3241.

    Article  CAS  Google Scholar 

  4. Xiao, Z., Hao, Y., Liu, B., & Qian, L. (2002). Leukemia & Lymphoma, 43, 1763–1768.

    Article  CAS  Google Scholar 

  5. Leclerc, S., Garnier, M., Hoessel, R., Marko, D., Bibb, J. A., Snyder, G. L., Greengard, P., Biernat, J., Wu, Y. Z., Mandelkow, E. M., Eisenbrand, G., & Meijer, L. (2001). Journal of Biological Chemistry, 276, 251–260.

    Article  CAS  Google Scholar 

  6. Adachi, J., Mori, Y., Matsui, S., Takigami, H., Fujino, J., Kitagawa, H., Miller, C. A., 3rd, Kato, T., Saeki, K., & Matsuda, T. (2001). Journal of Biological Chemistry, 276, 31475–31478.

    Article  CAS  Google Scholar 

  7. Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P., & Gibson, D. T. (1983). Science, 222, 167–169.

    Article  CAS  Google Scholar 

  8. O'Connor, K. E., & Hartmans, S. (1998). Biotechnology Letters, 20, 219–223.

    Article  Google Scholar 

  9. Drewlo, S., Brämer, C. O., Madkour, M., Mayer, F., & Steinbüchel, A. (2001). Applied and Environmental Microbiology, 67, 1964–1969.

    Article  CAS  Google Scholar 

  10. Zhang, Z. G., Liu, Y., Guengerich, F. P., Matse, J. H., Chen, J., & Wu, Z. L. (2009). Journal of Biotechnology, 139, 12–18.

    Article  CAS  Google Scholar 

  11. McClay, K., Boss, C., Keresztes, I., & Steffan, R. J. (2005). Applied and Environmental Microbiology, 71, 5476–5483.

    Article  CAS  Google Scholar 

  12. Kim, J. Y., Lee, K., Kim, Y., Kim, C. K., & Lee, K. (2003). Letters in Applied Microbiology, 36, 343–348.

    Article  CAS  Google Scholar 

  13. Kim, J. Y., Lee, K., Kim, Y., Kim, C. K., & Lee, K. (2005). Letters in Applied Microbiology, 41, 163–168.

    Article  CAS  Google Scholar 

  14. Qu, Y. Y., Shi, S. N., Zhou, H., Ma, Q., Li, X. L., Zhang, X. W., & Zhou, J. T. (2012). PLoS One, 7. 10.1371/annotation/087266ef-a19f-4224-a7c2-119d1b363331.

  15. Yun, J. Y., Lee, J. E., Yang, K. M., Cho, S., Kim, A., Kwon, Y. E., & Park, J. B. (2011). Bioprocess and Biosystems Engineering, 35, 211–216.

    Article  Google Scholar 

  16. Mohana, S., Shrivastava, S., Divecha, J., & Madamwar, D. (2008). Bioresource Technology, 99, 562–569.

    Article  CAS  Google Scholar 

  17. Han, G. H., Shin, H.-J., & Kim, S. W. (2008). Enzyme and Microbial Technology, 42, 617–623.

    Article  CAS  Google Scholar 

  18. Carliell, C. M., Barclay, S. J., Naidoo, N., Buckley, C. A., Mulholland, D. A., & Senior, E. (1995). Water SA, 21, 61–69.

    CAS  Google Scholar 

  19. Neujahr, H. Y., & Gaal, A. (1973). European Journal of Biochemistry, 35, 386–400.

    Article  CAS  Google Scholar 

  20. Seeger, M., González, M., Cámara, B., Muñoz, L., Ponce, E., Mejías, L., Mascayano, C., Vásquez, Y., & Sepúlveda-Boza, S. (2003). Applied and Environmental Microbiology, 69, 5045–5050.

    Article  CAS  Google Scholar 

  21. Wu, Z. L., Podust, L. M., & Guengerich, F. P. (2005). Journal of Biological Chemistry, 280, 41090–41100.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Creative Research Group from the National Natural Science Foundation of China (no. 51121062), the National Natural Science Foundation of China (nos. 51108120, 51078054, and 51178139), and the 4th Special Financial Grant from the China Postdoctoral Science Foundation (no. 201104430).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Ma or Yuanyuan Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, S., Ma, F., Sun, T. et al. Biotransformation of Chloro-Substituted Indoles to Indigoids by Phenol Hydroxylase from Arthrobacter sp. W1. Appl Biochem Biotechnol 170, 951–961 (2013). https://doi.org/10.1007/s12010-013-0234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0234-y

Keywords

Navigation