Skip to main content
Log in

Single Tryptophan of Disordered Loop from Plasmodium falciparum Purine Nucleoside Phosphorylase: Involvement in Catalysis and Microenvironment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Among various tropical diseases, malaria is a major life-threatening disease caused by Plasmodium parasite. Plasmodium falciparum is responsible for the deadliest form of malaria, so-called cerebral malaria. Purine nucleoside phosphorylase from P. falciparum is a homohexamer containing single tryptophan residue per subunit that accepts inosine and guanosine but not adenosine for its activity. This enzyme has been exploited as drug target against malaria disease. It is important to draw together significant knowledge about inherent properties of this enzyme which will be helpful in better understanding of this drug target. The enzyme shows disorder to order transition during catalysis. The single tryptophan residue residing in conserved region of transition loop is present in purine nucleoside phosphorylases throughout the Plasmodium genus. This active site loop motif is conserved among nucleoside phosphorylases from apicomplexan parasites. Modification of tryptophan residue by N-bromosuccinamide resulted in complete loss of activity showing its importance in catalysis. Inosine was not able to protect enzyme against N-bromosuccinamide modification. Extrinsic fluorescence studies revealed that tryptophan might not be involved in substrate binding. The tryptophan residue localised in electronegative environment showed collisional and static quenching in the presence of quenchers of different polarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Kim, K., & Schramm, V. L. (2002). Journal of Biological Chemistry, 277, 3219–3225.

    Article  CAS  Google Scholar 

  2. Reyes, P., Rathod, P. K., Sanchez, D. J., Mrema, J. E., Rieckmann, K. H., & Heidrich, H. G. (1982). Molecular and Biochemical Parasitology, 5, 275–290.

    Article  CAS  Google Scholar 

  3. Hyde, J. E. (2007). Current Drug Targets, 8, 31–47.

    Article  CAS  Google Scholar 

  4. Ting, L. M., Shi, W., Lewandowicz, A., Singh, V., Mwakingwe, A., Birck, M. R., et al. (2005). Journal of Biological Chemistry, 280, 9547–9554.

    Article  CAS  Google Scholar 

  5. Haider, N., Eschbach, M. L., Dias Sde, S., Gilberger, T. W., Walter, R. D., & Lüersen, K. (2005). Molecular and Biochemical Parasitology, 142, 224–236.

    Article  CAS  Google Scholar 

  6. Pegg, A. E. (1988). Cancer Research, 48, 759–774.

    CAS  Google Scholar 

  7. Cassera, M. B., Hazleton, K. Z., Merino, E. F., Obaldia, N., III, Ho, M.-C., Murkin, A. S., et al. (2011). PLoS One, 6(11), e26916.

    Article  CAS  Google Scholar 

  8. Mao, C., Cook, W. J., Zhou, M., Koszalka, G. W., Krenitsky, T. A., & Ealick, S. E. (1997). Structure, 5, 1373–1383.

    Article  CAS  Google Scholar 

  9. Schnick, C., Robien, M. A., Brzozowski, A. M., Dodson, E. J., Murshudov, G. N., Anderson, L., et al. (2005). Acta Crystallographica, D61, 1245–1254.

    CAS  Google Scholar 

  10. Madrid, D. C., Ting, L., Waller, K. L., Schramm, V. L., & Kim, K. (2008). Journal of Biological Chemistry, 283, 35899–35906.

    Article  CAS  Google Scholar 

  11. Lewandowicz, A., & Schramm, V. L. (2004). Biochemistry, 43, 1458–1468.

    Article  CAS  Google Scholar 

  12. Shi, W., Ting, L., Kicska, G. A., Lewandowicz, A., Tyler, P. C., Evans, G. B., et al. (2004). Journal of Biological Chemistry, 279, 18103–18106.

    Article  CAS  Google Scholar 

  13. Choudhary, K., Ting, L. M., Kim, K., & Roos, D. S. (2006). Journal of Biological Chemistry, 281, 25652–25658.

    Article  Google Scholar 

  14. Tahirov, T. H., Inagaki, E., Ohshima, N., Kitao, T., Kuroishi, C., Ukita, Y., et al. (2004). Journal of Molecular Biology, 337, 1149–1160.

    Article  CAS  Google Scholar 

  15. Chaikuad, A., & Brady, R. L. (2009). BMC Structural Biology, 9, 42–59.

    Article  Google Scholar 

  16. Mardanyan, S., Sharoyan, S., Antonyan, A., Armenyan, A., Cristalii, G., & Lupidi, G. (2001). Biochimica et Biophysica Acta, 1546, 185–195.

    Article  CAS  Google Scholar 

  17. Mungala, N., Basus, V. L., & Wang, C. C. (2001). Biochemistry, 40, 4303–4311.

    Article  Google Scholar 

  18. Reshetenyak, Y. K., & Burstein, E. A. (2001). Biophysical Journal, 81, 1710–1734.

    Article  Google Scholar 

  19. Joshi, S., Singh, A. R., Kumar, A., Misra, P. C., Siddiqi, I. M., & Saxena, J. K. (2008). Molecular and Biochemical Parasitology, 160, 32–41.

    Article  CAS  Google Scholar 

  20. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Spande, T. F., & Witkop, B. (1967). Methods in Enzymology, 11, 498–506.

    Article  CAS  Google Scholar 

  22. Balsera, M., Arellano, J. B., Pazos, F., Devos, D., Valencia, A., & Rivas, J. D. L. (2003). European Journal of Biochemistry, 270, 3916–3927.

    Article  CAS  Google Scholar 

  23. Bandivadekar, K. R., & Deshpande, V. V. (1996). Biochemical Journal, 315, 583–587.

    CAS  Google Scholar 

  24. Wielgus-Kutrowska, B., Bzowska, A., Tebbe, J., Koellner, G., & Shugar, D. (2002). Biochimica et Biophysica Acta, 1597, 320–334.

    Article  CAS  Google Scholar 

  25. Zhang, Z., Ostanin, K., & Van Etten, R. L. (1997). Acta Biochimica Polonica, 44(4), 659–672.

    CAS  Google Scholar 

  26. Ponyi, T., Szabo, L., Nagy, T., Orosz, L., Simpson, P. J., Williamson, M. P., et al. (2000). Biochemistry, 39, 985–991.

    Article  CAS  Google Scholar 

  27. Church, F. C., Villanueva, G. B., & Griffith, M. J. (1986). Archives of Biochemistry and Biophysics, 246(1), 175–184.

    Article  CAS  Google Scholar 

  28. Gunasekaran, K., Ma, B., Ramakrishnan, B., Qasba, P. K., & Nussinov, R. (2003). Biochemistry, 42, 3674–3687.

    Article  CAS  Google Scholar 

  29. Laws, W. R., & Contino, P. B. (1992). Methods in Enzymology, 210, 449–463.

    Article  Google Scholar 

  30. Eftink, M. R., & Ghiron, C. A. (1981). Analytical Biochemistry, 114, 199–227.

    Article  CAS  Google Scholar 

  31. Mukherjee, S., Saha, B., & Das, A. K. (2009). Biophysical Chemistry, 141, 94–104.

    Article  CAS  Google Scholar 

  32. Sultan, N. A. M., Rao, R. N., Nadimpalli, S. K., & Swamy, M. J. (2006). Biochimica et Biophysica Acta, 1760, 1001–1008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Council of Scientific and Industrial Research, India, for providing junior and senior research fellowships. CDRI communication number: 8443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Kumar Saxena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suthar, M.K., Verma, A., Doharey, P.K. et al. Single Tryptophan of Disordered Loop from Plasmodium falciparum Purine Nucleoside Phosphorylase: Involvement in Catalysis and Microenvironment. Appl Biochem Biotechnol 170, 868–879 (2013). https://doi.org/10.1007/s12010-013-0228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0228-9

Keywords

Navigation