Skip to main content
Log in

Dynamics of PEGylated–Dextran–Spermine Nanoparticles for Gene Delivery to Leukemic Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Leukemic cells are hard-to-transfect cell lines. Many transfection reagents which can provide high gene transfer efficiency in common adherent cell lines are not effective to transfect established blood cell lines or primary leukemic cells. This study aims to examine a new class of cationic polymer non-viral vector, PEGylated–dextran–spermine (PEG-D-SPM), to determine its ability to transfect the leukemic cells. Here, the optimal conditions of the complex preparation (PEG-D-SPM/plasmid DNA (pDNA)) were examined. Different weight-mixing (w/w) ratios of PEG-D-SPM/pDNA complex were prepared to obtain an ideal mixing ratio to protect encapsulated pDNA from DNase degradation and to determine the optimal transfection efficiency of the complex. Strong complexation between polymer and pDNA in agarose gel electrophoresis and protection of pDNA from DNase were detected at ratios from 25 to 15. Highest gene expression was detected at w/w ratio of 18 in HL60 and K562 cells. However, gene expression from both leukemic cell lines was lower than the control MCF-7 cells. The cytotoxicity of PEG-D-SPM/pDNA complex at the most optimal mixing ratios was tested in HL60 and K562 cells using MTS assay and the results showed that the PEG-D-SPM/pDNA complex had no cytotoxic effect on these cell lines. Spherical shape and nano-nature of PEG-D-SPM/pDNA complex at ratio 18 was observed using transmission electron microscopy. As PEG-D-SPM showed modest transfection efficiency in the leukemic cell lines, we conclude that further work is needed to improve the delivery efficiency of the PEG-D-SPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zelphati, O., Wang, Y., Kitada, S., Reed, J. C., Felgner, P. L., & Corbeil, J. (2001). Journal of Biological Chemistry, 276(37), 35103.

    Article  CAS  Google Scholar 

  2. Shayakhmetov, D. M., Papayannopoulou, T., Stamatoyannopoulos, G., & Lieber, A. (2000). Journal of virology, 74(6), 2567.

    Article  CAS  Google Scholar 

  3. Stripecke, R., Cardoso, A. A., Pepper, K. A., Skelton, D. C., Yu, X. J., Mascarenhas, L., et al. (2000). Blood, 96(4), 1317.

    CAS  Google Scholar 

  4. Nienhuis, A. W. (2008). Blood, 111(9), 4431.

    Article  CAS  Google Scholar 

  5. Cusack, J. C., & Tanabe, K. K. (2002). Surgical Oncology Clinics of North America, 11(3), 497–519.

    Article  Google Scholar 

  6. Liu, F., & Huang, L. (2002). Journal of Controlled Release, 78(1-3), 259–266.

    Article  CAS  Google Scholar 

  7. Kim, W. J., Yockman, J. W., Lee, M., Jeong, J. H., Kim, Y. H., & Kim, S. W. (2005). Journal of Controlled Release, 106(1-2), 224–234.

    Article  CAS  Google Scholar 

  8. Choi, S., & Lee, K. D. (2008). Journal of Controlled Release, 131(1), 70–76.

    Article  CAS  Google Scholar 

  9. Hosseinkhani, H., Tabata, Y. (2005). Controlled Release, 108, 540–556.

    Google Scholar 

  10. Azzam, T., Eliyahu, H., Makovitzki, A., Linial, M., & Domb, A. J. (2004). Journal of Controlled Release, 96(2), 309–323.

    Article  CAS  Google Scholar 

  11. Li, S., & Huang, L. (2000). Gene Therapy, 7(1), 31–34.

    Article  CAS  Google Scholar 

  12. Putnam, D., Gentry, C., Pack, D., & Langer, R. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98(3), 1200.

    Article  CAS  Google Scholar 

  13. Remy, J., Abdallah, B., Zanta, M., Boussif, O., Behr, J., & Demeneix, B. (1998). Advanced Drug Delivery Reviews, 30(1-3), 85–95.

    Article  CAS  Google Scholar 

  14. Wu, G., & Wu, C. (1987). Journal of Biological Chemistry, 262(10), 4429.

    CAS  Google Scholar 

  15. Mumper, R., Duguid, J., Anwer, K., Barron, M., Nitta, H., & Rolland, A. (1996). Pharmaceutical Research, 13(5), 701–709.

    Article  CAS  Google Scholar 

  16. Leong, K., Mao, H., Truong, L. V., Roy, K., Walsh, S., & August, J. (1998). Journal of Controlled Release, 53(1-3), 183–193.

    Article  CAS  Google Scholar 

  17. Azzam, T., Raskin, A., Makovitzki, A., Brem, H., Vierling, P., Lineal, M., et al. (2002). Macromolecules, 35(27), 9947–9953.

    Article  CAS  Google Scholar 

  18. Behr, J. (1997). Chimia International Journal for Chemistry, 1(2), 34–36.

    Google Scholar 

  19. Boussif, O., Lezoualc'h, F., Zanta, M., Mergny, M., Scherman, D., Demeneix, B., et al. (1995). Proceedings of the National Academy of Sciences of the United States of America, 92(16), 7297.

    Article  CAS  Google Scholar 

  20. Hosseinkhani, H., Khademhosseini, A., Gabrielson, N. P., Pack, D. W., & Kobayashi, H. (2008). Journal Biomedical Materials Research Part A, 85, 47–60.

    Article  Google Scholar 

  21. Hosseinkhani, H., Inatsugu, Y., Hiraoka, Y., Inoue, S., Shimokawa, H., & Tabata, Y. (2006). Biomaterials, 27, 1387–1398.

    Article  CAS  Google Scholar 

  22. Hosseinkhani, H., Kobayashi, H., Hiraoka, Y., Shimokawa, H., Domb, A. J., & Tabata, Y. (2006). Biomaterials, 27, 4269–4278.

    Article  CAS  Google Scholar 

  23. Hosseinkhani, H., Hiraoka, Y., Inoue, S., Shimokawa, H., & Tabata, Y. (2005). Tissue Engineering, 11, 1459–1475.

    Article  CAS  Google Scholar 

  24. Hosseinkhani, H., Inoue, S., Hiraoka, Y., & Tabata, Y. (2005). Tissue Engineering, 11, 1476–1488.

    Article  CAS  Google Scholar 

  25. Berscht, P., Nies, B., Liebendörfer, A., & Kreuter, J. (1995). Journal of Materials Science: Materials in Medicine, 6(4), 201–205.

    Article  CAS  Google Scholar 

  26. Carreño-Gómez, B., & Duncan, R. (1997). International Journal of Pharmaceutics, 148(2), 231–240.

    Article  Google Scholar 

  27. Azzam, T., Eliyahu, H., Makovitzki, A., & Domb, A. (2003). Wiley Online Library, 247–262.

  28. Hosseinkhani, H., Azzam, T., Tabata, Y., & Domb, A. (2004). Gene Therapy, 11(2), 194–203.

    Article  CAS  Google Scholar 

  29. Azzam, T., Shapira, L., Linial, M., Barenholz, Y., & Domb, A. J. (2002). J. Med. Chem Biol, 45, 1817–1823.

    Article  CAS  Google Scholar 

  30. Azzam, T., Makovitzki, A., Brem, H., Vierling, P., & Lineal, M. (2002). Macromolecules, 35, 9947–9953.

    Article  CAS  Google Scholar 

  31. Mao, H. Q., Roy, K., Troung-Le, V. L., Janes, K. A., Lin, K. Y., Wang, Y., et al. (2001). Journal of Controlled Release, 70(3), 399–421.

    Article  CAS  Google Scholar 

  32. Wolfert, M. A., Schacht, E. H., Toncheva, V., Ulbrich, K., Nazarova, O., & Seymour, L. W. (1996). Human Gene Therapy, 7(17), 2123–2133.

    Article  CAS  Google Scholar 

  33. Syahril, A., Wai, Y., Hossienkhani, H., Mohsen, H., Ehab, M., Rajesh, R., et al. (2010). Journal of Biomedicine and Biotechnology. 2010, 10.

  34. Hashida, M., Mahato, R. I., Kawabata, K., Miyao, T., Nishikawa, M., & Takakura, Y. (1996). Journal of Controlled Release, 41(1-2), 91–97.

    Article  CAS  Google Scholar 

  35. Morille, M., Passirani, C., Vonarbourg, A., Clavreul, A., & Benoit, J. P. (2008). Biomaterials, 29(24-25), 3477–3496.

    Article  CAS  Google Scholar 

  36. Kim, S. H., Jeong, J. H., Kim, T. I., Kim, S. W., & Bull, D. A. (2009). Mol Pharm, 6(3), 718–726.

    Article  CAS  Google Scholar 

  37. Schaffer, D. V., Fidelman, N. A., Dan, N., & Lauffenburger, D. A. (2000). Biotechnology and Bioengineering, 67(5), 598–606.

    Article  CAS  Google Scholar 

  38. Anderson, D. G., Akinc, A., Hossain, N., & Langer, R. (2005). Molecular Therapy, 11(3), 426–434.

    Article  CAS  Google Scholar 

  39. Thomas, J. J., Rekha, M. R., & Sharma, C. P. (2010). International Journal of Pharmaceutics, 389(1-2), 195–206.

    Article  CAS  Google Scholar 

  40. Zumbansen, M., Altrogge, L. M., Spottke, N. U., Spicker, S., Offizier, S. M., Domzalski, S. B., et al. (2009). J RNAi Gene Silencing, 29(6, 1), 354–360.

    Google Scholar 

  41. Hamm, A., Krott, N., Breibach, I., Blindt, R., & Bosserhoff, A. K. (2002). Tissue Engineering, 8(2), 235–245.

    Article  CAS  Google Scholar 

  42. Marit, G., Cao, Y., Froussard, P., Ripoche, J., Dupouy, M., Elandaloussi, A., et al. (2000). European Journal of Haematology, 64(1), 22–31.

    Article  CAS  Google Scholar 

  43. Ye, Z. Q., Qiu, P., Burkholder, J. K., Turner, J., Culp, J., Roberts, T., et al. (1998). Human Gene Therapy, 9(15), 2197–2205.

    Article  CAS  Google Scholar 

  44. Toneguzzo, F., & Keating, A. (1986). Proceedings of the National Academy of Sciences of the United States of America, 83(10), 3496.

    Article  CAS  Google Scholar 

  45. He, R., Qian, X., Yin, J., & Zhu, Z. (2002). Journal of Materials Chemistry, 12(12), 3783–3786.

    Article  CAS  Google Scholar 

  46. Wang, X., Zhuang, J., Peng, Q., & Li, Y. (2005). Nature, 437(7055), 121–124.

    Article  CAS  Google Scholar 

  47. Brunner, S., Sauer, T., Carotta, S., Cotton, M., Saltik, M., & Wagner, E. (2000). Gene Therapy, 7(5), 401–407.

    Article  CAS  Google Scholar 

  48. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. W. (2006). Nano Letters, 6(4), 662–668.

    Article  CAS  Google Scholar 

  49. Lin, C., Zhong, Z., Lok, M. C., Jiang, X., Hennink, W. E., Feijen, J., et al. (2006). Journal of Controlled Release, 116(2), 130–137.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rosli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amini, R., Jalilian, F.A., Abdullah, S. et al. Dynamics of PEGylated–Dextran–Spermine Nanoparticles for Gene Delivery to Leukemic Cells. Appl Biochem Biotechnol 170, 841–853 (2013). https://doi.org/10.1007/s12010-013-0224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0224-0

Keywords

Navigation