Skip to main content
Log in

Manganese Peroxidase H4 Isozyme Mediated Degradation and Detoxification of Triarylmethane Dye Malachite Green: Optimization of Decolorization by Response Surface Methodology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A cDNA encoding for manganese peroxidase isozyme H4 (MnPH4), isolated from Phanerochaete chrysosporium, was expressed in Pichia pastoris, under the control of alcohol oxidase I promoter. The recombinant MnPH4 was efficiently secreted onto media supplemented with hemin at a maximum concentration of 500 U/L, after which purified rMnPH4 was used to decolorize the triarylmethane dye malachite green (MG). Response surface methodology (RSM) was employed to optimize three different operational parameters for the decolorization of MG. RSM showed that the optimized variables of enzyme (0.662 U), MnSO4 (448 μM), and hydrogen peroxide (159 μM) decolorized 100 mg/L of MG completely at 3 h. Additionally, UV–VIS spectra, high-performance liquid chromatography, gas chromatography–mass spectrometry, and liquid chromatography–electrospray ionization/mass spectrometry analysis confirmed the degradation of MG by the formation of main metabolites 4-dimethylamino-benzophenone hydrate, N, N-dimethylaniline (N,N-dimethyl-benzenamine), and methylbenzaldehyde. Interestingly, it was found that rMnPH4 mediates hydroxyl radical attack on the central carbon of MG. Finally, rMnPH4 degraded MG resulted in the complete removal of its toxicity, which was checked under in vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang-Jun, C., Daniel, R. D., & Carl, E. C. (2001). Biotransformation of malachite green by the fungus Cunninghamella elegans. Applied and Environmental Microbiology, 67, 4358–4360.

    Article  Google Scholar 

  2. Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66, 319–329.

    Article  CAS  Google Scholar 

  3. Beltz, L. A., Neira, D., Axtell, C., Iverson, S., Deaton, W., Waldschmidt, T., Bumpus, J., & Johnston, C. (2001). Immunotoxicity of explosive-contaminated soil before and after bioremediation. Archives of Environmental Contamination and Toxicology, 40, 311–317.

    Article  CAS  Google Scholar 

  4. Dias, A., Bezerra, R., Lemos, P., & Pereira, A. (2003). In vivo and laccase characterization of xenobiotic azo dyes by basidiomycetous fungus: characterization of its lignolytic system. World Journal of Microbiology and Biotechnology, 19, 969–975.

    Article  CAS  Google Scholar 

  5. Takano, M., Nishida, A., & Nakamura, M. (2001). Screening of wood-rotting fungi for kraft pulp bleaching by the poly R decolorization test and biobleaching of hardwood kraft pulp by Phanerochaete crassa WD1694. Journal of Wood Science, 47, 63–68.

    Article  CAS  Google Scholar 

  6. Bumpus, J. A., & Aust, S. D. (1987). Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. BioEssays, 6, 166–170.

    Article  CAS  Google Scholar 

  7. Wong, D. W. (2009). Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 157, 174–209.

    Article  CAS  Google Scholar 

  8. Gold, M. H., & Alic, M. (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiological Reviews, 57, 605–622.

    CAS  Google Scholar 

  9. Kersten, P. J., Kalyanaraman, B., Hammel, K. E., Reinhammar, B., & Kirk, T. K. (1990). Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochemical Journal, 268, 475–480.

    CAS  Google Scholar 

  10. Azmi, W., Sani, R. K., & Banerjee, U. C. (1998). Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 22, 185–191.

    Article  CAS  Google Scholar 

  11. Leisola, M. S. A., Kozulic, B., Meussdoerffer, F., & Fiechter, A. (1987). Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. The Journal of Biological Chemistry, 262, 419–424.

    CAS  Google Scholar 

  12. Wariishi, H., Valli, K., & Gold, M. H. (1991). In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 176, 269–276.

    Article  CAS  Google Scholar 

  13. Kirk, T. K. (1987). Lignin-degrading enzymes. Philosophical Transactions of The Royal Society A, 321, 461–474.

    Article  CAS  Google Scholar 

  14. Conesa, A., van den Hondel, C. A. M. J. J., & Punt, P. J. (2000). Studies on the production of fungal peroxidases in Aspergillus niger. Applied and Environmental Microbiology, 66, 3016–3023.

    Article  CAS  Google Scholar 

  15. Gu, L., Lajoie, C., & Kelly, C. (2003). Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris. Biotechnology Progress, 19, 1403–1409.

    Article  CAS  Google Scholar 

  16. Champagne, P. P., & Ramsay, J. A. (2005). Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Applied Microbiology and Biotechnology, 69, 276–285.

    Article  CAS  Google Scholar 

  17. Tien, M., & Kirk, T. K. (1988). Lignin peroxidase of Phanerochaete chrysosporium. Methods in Enzymology, 161, 238–249.

    Article  CAS  Google Scholar 

  18. Sambrook, S., & Russell, D. W. (2003). Molecular cloning: a laboratory manual (3rd ed.). New York: Cold Spring Harbor.

    Google Scholar 

  19. Boer, C. G., Obici, L., De Souza, C. G. M., & Peralta, R. M. (2006). Purification and some properties of Mn peroxidase from Lentinula edodes. Process Biochemistry, 41, 1203–1207.

    Article  CAS  Google Scholar 

  20. Du, L. N., Wang, S., Li, G., Wang, B., Jia, X. M., Zhao, Y. H., & Chen, Y. L. (2011). Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology, 20, 438–446.

    Article  CAS  Google Scholar 

  21. Box, G. E. P., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B, 13, 1–45.

    Google Scholar 

  22. Gokulakrishnan, S., Parakh, P., & Prakash, H. (2012). Degradation of malachite green by potassium persulphate, its enhancement by 1, 8-dimethyl-1, 3, 6, 8, 10, 13 hexaazacyclotetradecane nickel (II) perchlorate complex, and removal of antibacterial activity. Journal of Hazardous Materials, 213–214, 19–27.

    Article  Google Scholar 

  23. Kwon, M. A., Kim, H. S., Yang, T. H., Song, B. K., & Song, J. K. (2009). High-level expression and characterization of Fusarium solani cutinase in Pichia pastoris. Protein Expression and Purification, 68, 104–109.

    Article  CAS  Google Scholar 

  24. Glenn, J. K., Akileswaran, L., & Gold, M. H. (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 251, 688–696.

    Article  CAS  Google Scholar 

  25. Myers, R. H., & Montgomery, D. C. (2002). In R. H. Myers (Ed.), Response surface methodology: Process and product in optimization using designed experiments (2nd ed.). New York: Wily.

    Google Scholar 

  26. Aleboyeh, A., Daneshvar, N., & Kasiri, M. B. (2008). Optimization of C.I. acid red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chemical Engineering and Processing: Process Intensification, 47, 827–832.

    Article  CAS  Google Scholar 

  27. Li, Y., Chang, C., & Wen, T. (1996). Application of statistical experimental strategies to H2O2 production on Au/graphite in alkaline solution. Industrial and Engineering Chemistry Research, 35, 4767–4771.

    Article  CAS  Google Scholar 

  28. Berberidou, C., Poulios, I., Xekoukoulotakis, N. P., & Mantzavinos, D. (2007). Sonolytic photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Applied Catalysis B: Environmental, 74, 63–72.

    Article  CAS  Google Scholar 

  29. Ju, Y., Yang, S., Ding, Y., Sun, C., Zhang, A., & Wang, L. (2008). Microwave-assisted rapid photocatalytic degradation of malachite green in TiO2 suspensions: mechanism and pathways. The Journal of Physical Chemistry. A, 112, 11172–11177.

    Article  CAS  Google Scholar 

  30. Cheng, M., Ma, W., Li, J., Huang, Y., Zhao, J., Wen, Y., & Xu, Y. (2004). Visible-light-assisted degradation of dye pollutants over Fe3+ loaded resin in the presence of H2O2 at neutral pH values. Environmental Science and Technology, 38, 1569–1575.

    Article  CAS  Google Scholar 

  31. Hofrichter, M., Scheibner, K., Schneegass, I., & Fritsche, W. (1998). Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Applied and Environmental Microbiology, 64, 399–404.

    CAS  Google Scholar 

  32. Ju, Y., Yang, S., Ding, Y., Sun, C., Gu, C., He, Z., Qin, C., He, H., & Xu, B. (2009). Microwave-enhanced H2O2-based process for treating aqueous malachite green solutions: intermediates and degradation mechanism. Journal of Hazardous Materials, 171, 123–132.

    Article  CAS  Google Scholar 

  33. Nagai, S. (1959). Induction of the respiration deficient mutation in yeast by various synthetic dyes. Science, 130, 1188–1189.

    Article  CAS  Google Scholar 

  34. Dhamgaye, S., Devaux, F., Manoharlal, R., Vandeputte, P., Shah, A. H., Singh, A., Blugeon, C., Sanglard, D., & Prasad, R. (2012). In vitro effect of malachite green on Candida albicans involves multiple pathways and transcriptional regulators UPC2 and STP2. Antimicrobial Agents and Chemotherapy, 56(1), 495–506.

    Article  CAS  Google Scholar 

  35. Wen, X., Jia, Y., & Li, J. (2010). Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. Journal of Hazardous Materials, 177, 924–928.

    Article  CAS  Google Scholar 

  36. Pizzul, L., Castillo Mdel, P., & Stenstrom, J. (2009). Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation, 20, 751–759.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Technology Development Program for Agriculture and Forestry, under the Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. This research was also supported in part by the Basic Science Research Program via the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0015666). We would like to thank the Research Institute of Bioindustry at Chonbuk National University for kindly providing the facilities for which to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Moon Park.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 6005 kb)

ESM 2

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanakumar, T., Palvannan, T., Kim, DH. et al. Manganese Peroxidase H4 Isozyme Mediated Degradation and Detoxification of Triarylmethane Dye Malachite Green: Optimization of Decolorization by Response Surface Methodology. Appl Biochem Biotechnol 171, 1178–1193 (2013). https://doi.org/10.1007/s12010-013-0220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0220-4

Keywords

Navigation