Skip to main content

Advertisement

Log in

Recombinant S-Adenosylhomocysteine Hydrolase from Thermotoga maritima: Cloning, Overexpression, Characterization, and Thermal Purification Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

S-Adenosylhomocysteine hydrolase (SAHase) encoded by sahase gene is a determinant when catalyzing the reversible conversion of adenosine and homocysteine to S-adenosylhomocysteine in most living organisms. The sahase gene was isolated from the genome of the highly thermostable anaerobic bacteria Thermotoga maritima, and then it was cloned, characterized, overexpressed using Escherichia coli, and partially purified by thermal precipitation. The thermal purification of the recombinant SAHase resulted in changes in the circular dichroism spectra. As a result of this analysis, it was possible to determine the structural changes in the composition of the α-helix and β-sheet content of the recombinant enzyme after purification. Moreover, a predicted secondary structure and 3D structural model was rendered by comparative molecular modeling to further understand the molecular function of this protein including its attractive biotechnological use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SAHase:

S-Adenosyl-l-homocysteine hydrolase

rSAHase:

Recombinant S-adenosyl-l-homocysteine hydrolase

SAH:

S-Adenosyl-l-homocysteine

ADO:

Adenosine

Hcy:

Homocysteine

Cys:

Cysteine

CD:

Circular dichroism

SAM:

S-Adenosylmethionine

sahase :

S-Adenosylhomocysteine hydrolase coding gene

References

  1. de la Haba, G., & Cantoni, G. L. (1959). J Parasit, 234, 603–608.

    Google Scholar 

  2. Ueland, P. M. (1982). Pharmacological Reviews, 34, 223–253.

    CAS  Google Scholar 

  3. Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., et al. (1996). The FASEB Journal, 10, 471–480.

    CAS  Google Scholar 

  4. Yin, D., Yang, X., Hu, Y., Kuczera, K., Schowen, R. L., Borchardt, R. T., et al. (2000). Biochemistry, 39, 9811–9818.

    Article  CAS  Google Scholar 

  5. Walker, R. D., & Duerre, J. A. (1975). Canadian Journal of Biochemistry, 53, 312–319.

    Article  CAS  Google Scholar 

  6. Wnuk, S. F. (2001). Mini Rev. Medicinal Chemistry, 1, 307–316.

    CAS  Google Scholar 

  7. Kajander, E. O., & Raina, A. M. (1981). Biochemical Journal, 193, 503–512.

    CAS  Google Scholar 

  8. Henderson, D. M., Hanson, S., Allen, T., Wilson, K., Coulter-Karis, D. E., Greenberg, M. L., et al. (1992). Molecular and Biochemical Parasitology, 53, 169–183.

    Article  CAS  Google Scholar 

  9. Creedon, K. A., Rathod, P. K., & Wellems, T. E. (1994). Journal of Biological Chemistry, 269, 16364–16370.

    CAS  Google Scholar 

  10. Cantoni, G. L. (1986). Biological methylation and drug design. In R. T. Borchardt, C. R. Creveiling, & P. M. Ueland (Eds.), The centrality of S-adenosylhomocysteinase in the regulation of the biological utilization of S-adenosylmethionine (pp. 227–238). Totowa: Humana.

    Google Scholar 

  11. Hayden, D. M., Rolletschek, H., Borisjuk, L., Corwin, J., Kliebenstein, D. J., Grimberg, A., et al. (2011). The Plant Journal, 67, 1018–1028.

    Article  CAS  Google Scholar 

  12. Siu, K. K., Asmus, K., Zhang, A. N., Horvatin, C., Li, S., Liu, T., et al. (2011). Journal of Structural Biology, 173, 86–98.

    Article  CAS  Google Scholar 

  13. Choi, J., Choi, D., Lee, S., Ryu, C. M., & Hwang, I. (2011). Trends in Plant Science, 16, 388–394.

    Article  CAS  Google Scholar 

  14. Keller, W., & Bekkaoui, F. (2009). Botany, 87, 519–525.

    Article  CAS  Google Scholar 

  15. Wu, X., Li, F., Kolenovsky, A., Caplan, A., Cui, Y., Cutler, A., et al. (2009). Botany, 87, 571–584.

    Article  CAS  Google Scholar 

  16. Masuta, C., Tanaka, H., Uehara, K., Kuwata, S., Koiwai, A., & Noma, M. (1995). Proceedings of the National Academy of Sciences of the United States of America, 92, 6117–6121.

    Article  CAS  Google Scholar 

  17. Hendricks, C. L., Ross, J. R., Pichersky, E., Noel, J. P., & Zhou, Z. S. (2004). Analytical Biochemistry, 326, 100–105.

    Article  CAS  Google Scholar 

  18. Edwards, A. L., Reyes, F. E., Héroux, A., & Batey, R. T. (2010). RNA, 16, 2144–2155.

    Article  CAS  Google Scholar 

  19. Collazo, E., Couture, J. F., Bulfer, S., & Trievel, R. C. (2005). Analytical Biochemistry, 342, 86–92.

    Article  CAS  Google Scholar 

  20. Palmer, N. A., Sattler, S. E., Saathoff, A. J., & Sarath, G. (2010). Journal of Agricultural and Food Chemistry, 12, 5220–5226.

    Article  Google Scholar 

  21. Bujnicki, J. M., Prigge, S. T., Cardinha, D., & Chiang, P. K. (2003). Proteins, 52, 624–632.

    Article  CAS  Google Scholar 

  22. Kim, B. G., Chun, T. G., Lee, H. Y., & Snapper, M. L. (2009). Bioorganic & Medicinal Chemistry, 15, 6707–6714.

    Article  Google Scholar 

  23. Carlucci, F., Tabucchi, A., Aiuti, A., Rosi, F., Floccari, F., Pagani, R., et al. (2003). Clinical Chemistry, 49, 1830–1838.

    Article  CAS  Google Scholar 

  24. Baric, I., Fumic, K., Glenn, B., Cuk, M., Schulze, A., Finkelstein, J. D., et al. (2004). Proceedings of the National Academy of Sciences of the United States of America, 23, 4234–4239.

    Article  Google Scholar 

  25. Liszka, M. J., Clark, M. E., Schneider, E., & Clark, D. S. (2012). Annual Review of Chemical and Biomolecular Engineering, 3, 77–102.

    Article  CAS  Google Scholar 

  26. Porcelli, M., Fusco, S., Inizio, T., Zappia, V., & Cacciapuoti, G. (2000). Protein Expression and Purification, 18, 27–35.

    Article  CAS  Google Scholar 

  27. Porcelli, M., Moretti, M. A., Concilio, L., Forte, S., Merlino, A., Graziano, G., et al. (2005). Proteins, 58, 815–825.

    Article  CAS  Google Scholar 

  28. Marino, G., Nitti, G., Arnone, M. I., Sannia, G., Gambacorta, A., & De Rosa, M. (1998). Journal of Biological Chemistry, 263, 12305–12309.

    Google Scholar 

  29. Jones, C. E., Fleming, T. M., Cowan, D. A., Littlechild, J. A., & Piper, P. W. (1995). European Journal of Biochemistry, 233, 800–808.

    Article  CAS  Google Scholar 

  30. Kumar, S., & Nussinov, R. (2001). Cellular and Molecular Life Sciences, 58, 1216–1233.

    Article  CAS  Google Scholar 

  31. Fabry, S., & Hensel, R. (1987). European Journal of Biochemistry, 165, 147–155.

    Article  CAS  Google Scholar 

  32. Simpson, H. D., Haufler, U. R., & Daniel, R. M. (1991). Biochemical Journal, 277, 413–417.

    CAS  Google Scholar 

  33. Koch, R., Canganella, F., Hippe, H., Jahnke, K. D., & Antranikian, G. (1997). Applied and Environmental Microbiology, 63, 1088–1094.

    CAS  Google Scholar 

  34. Klingeberg, M., Galunsky, B., Sjoholm, C., Kasche, V., & Antranikian, G. (1995). Applied and Environmental Microbiology, 61, 3094–3104.

    Google Scholar 

  35. Wassenberg, D., Liebl, W., & Jaenicke, R. (2000). Journal of Molecular Biology, 295, 279–288.

    Article  CAS  Google Scholar 

  36. Andreotti, G., Cubellis, M. V., Nitti, G., Sannia, G., Mai, X., Adams, M. W. W., et al. (1995). Biochimica et Biophysica Acta, 1247, 90–96.

    Article  Google Scholar 

  37. Vieille, C., & Zeikus, G. J. (2001). Microbiology and Molecular Biology Reviews, 65, 1–43.

    Article  CAS  Google Scholar 

  38. Sreerama, N., Venyaminov, S. Y., & Woody, R. W. (2000). Analytical Biochemistry, 287, 243–251.

    Article  CAS  Google Scholar 

  39. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  40. Andrade, M. A., Chacón, P., Merelo, J. J., & Morán, F. (1993). Protein Engineering, 6, 383–390.

    Article  CAS  Google Scholar 

  41. Merelo, J. J., Andrade, M. A., Prieto, A., & Morán, F. (1994). Neurocomputing, 6, 443–454.

    Article  Google Scholar 

  42. Deleage, G., & Roux, B. (1987). Protein Engineering, 1, 289–294.

    Article  CAS  Google Scholar 

  43. Geourjon, C., & Deleage, G. (1994). Protein Engineering, 7, 157–164.

    Article  CAS  Google Scholar 

  44. Guermeur, Y., Geourjon, C., Gallinari, P., & Deleage, G. (1999). Bioinformatics, 15, 413–421.

    Article  CAS  Google Scholar 

  45. King, R. D., & Sternberg, M. J. (1996). Protein Science, 5, 2298–2310.

    Article  CAS  Google Scholar 

  46. Peitsch, M. C., Wells, T. N., Stampf, D. R., & Sussman, J. L. (1995). Trends in Biochemical Sciences, 20, 82–84.

    Article  CAS  Google Scholar 

  47. Guex, N., & Peitsch, M. C. (1997). Electrophoresis, 18, 2714–2723.

    Article  CAS  Google Scholar 

  48. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). Nucleic Acids Research, 31, 3381–3385.

    Article  CAS  Google Scholar 

  49. Lozada-Ramírez, J. D., Martínez-Martínez, I., Sánchez-Ferrer, A., & García-Carmona, F. (2006). Journal of Biochemical and Biophysical Methods, 67, 131–140.

    Article  Google Scholar 

  50. Porcelli, M., Cacciapuoti, G., Fusco, S., Iacomino, G., Gambacorta, A., De Rosa, M., et al. (1993). Biochimica et Biophysica Acta, 1164, 179–188.

    Article  CAS  Google Scholar 

  51. Huber, R., Langworthy, T. A., Köning, H., Thomm, M., Woese, C. R., Sleytr, U. B., et al. (1986). Archives of Microbiology, 144, 324–333.

    Article  CAS  Google Scholar 

  52. Bouthier de la Tour, C., Portemer, C., Kaltoum, H., & Duguet, M. (1998). Journal of Bacteriology, 180, 274–281.

    CAS  Google Scholar 

  53. Yamada, T., Takata, Y., Komoto, J., Gomi, T., Ogawa, H., Fujioka, M., et al. (2005). International Journal of Biochemistry and Cell Biology, 37, 2417–2435.

    Article  CAS  Google Scholar 

  54. Tanaka, N., Nakanishi, M., Kusakabe, Y., Shiraiwa, K., Yabe, S., Ito, Y., et al. (2004). Journal of Molecular Biology, 343, 1007–1017.

    Article  CAS  Google Scholar 

  55. Bethin, K. E., Petrovic, N., & Ettinger, M. J. (1995). Journal of Biological Chemistry, 270, 20698.

    Article  CAS  Google Scholar 

  56. Aguilar, C. F., Sanderson, I., Moracci, M., Ciaramella, M., Nucci, R., Rossi, M., et al. (1997). Journal of Molecular Biology, 271, 789–802.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Spanish grants from MINECO-FEDER (BIO2010-22225-C02-01) and from Programa de Ayuda a Grupos de Excelencia de la Región de Murcia, Fundación Séneca (04541/GERM/06, Plan Regional de Ciencia y Tecnología 2007–2010), and by Proyecto CONACYT Ciencia Básica 2009–2012 (CB-133949).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Lozada-Ramírez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional material 1

(A) 3D structural model of a single unit of SAHase from Thermotoga maritima. Alpha-helix are indicated in black, beta-strand in gray, and random coils in white. (B) Amino acid residues of the conserved domains implied in SAHase catalytic activity (Ado binding), and in NAD+ binding. Amino acid residues are discussed in the text. (JPEG 103 kb)

Additional material 2

Ribbon diagrams of the tetrameric structure of rat SAHase (A) and the theoretical structure of T. maritima SAHase. (B) Enlargements. (C) and (D) Amino acid residues which are involved in the network interactions in the central channel of rat SAHase and T. maritima SAHase, respectively. Amino acid residues are discussed in the text. (JPEG 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozada-Ramírez, J.D., Sánchez-Ferrer, A. & García-Carmona, F. Recombinant S-Adenosylhomocysteine Hydrolase from Thermotoga maritima: Cloning, Overexpression, Characterization, and Thermal Purification Studies. Appl Biochem Biotechnol 170, 639–653 (2013). https://doi.org/10.1007/s12010-013-0218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0218-y

Keywords

Navigation