Skip to main content
Log in

Characterization of a Novel Organic Solvent Tolerant Protease from a Moderately Halophilic Bacterium and Its Behavior in Ionic Liquids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An extracellular protease was purified from a novel moderately halophilic bacterium Salinivibrio sp. strain MS-7 by the combination of an acetone precipitation (40–80 %) step and a DEAE-cellulose anion exchange column chromatography. Kinetic parameters of the enzyme exhibited V max and K m of 130 U/mg and 1.14 mg/ml, respectively, using casein as a substrate. The biochemical properties of the enzyme revealed that the 21-kDa protease had a temperature and pH optimum of 50 °C and 8.0, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, Pefabloc SC, chymostatin, and also EDTA, indicating that it belongs to the class of serine metalloproteases. Interestingly, Ba2+ and Ca2+ (2 mM) strongly enhanced the enzyme activity, while Fe2+ and Mg2+ activated moderately and Zn2+, Ni2+, and Hg2+ decreased the enzyme activity. The effect of organic solvents with different logP on the purified protease revealed complete stability in toluene, ethyl acetate, chloroform, and n-hexane at 10 and 50 % (v/v) and moderate stability even in 50 % of DMSO and ethanol. The behavior of the MS-7 protease in three imidazolium-based ionic liquids exhibited suitable activity in these green solvent systems, especially in 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]). Comparison of the purified protease with other previously reported proteases suggests that strain MS-7 secrets a novel organic solvent-tolerant protease with outstanding activity in organic solvents and imidazolium-based ionic liquids, which could be applied in low water synthetic section of industrial biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalisz, H. M. (1988). Microbial proteinases. Advances in Biochemical Engineering/Biotechnology, 36, 1–65.

    Article  CAS  Google Scholar 

  2. Kumar, C. G., & Takagi, H. (1999). Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, 17, 561–594.

    Article  CAS  Google Scholar 

  3. Olivera, N. L., Sequeiros, C., & Nievas, M. L. (2007). Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles, 11, 517–526.

    Article  CAS  Google Scholar 

  4. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  5. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  6. Ogino, H., & Ishikawa, H. (2001). Enzymes which are stable in the presence of organic solvents. Journal of Bioscience and Bioengineering, 91, 109–116.

    CAS  Google Scholar 

  7. Ogino, H., Tsuchiyama, S., Yasuda, M., & Doukyu, N. (2010). Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease. Protein Engineering, Design & Selection, 23, 147–152.

    Article  CAS  Google Scholar 

  8. Klibanov, A. M. (2001). Improving enzymes by using them in organic solvents. Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  9. Lee, M. Y., & Dordick, J. S. (2002). Enzyme activation for nonaqueous media. Current Opinion in Biotechnology, 13, 376–384.

    Article  CAS  Google Scholar 

  10. Yang, Z., & Pan, W. (2005). Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme and Microbial Technology, 37, 19–28.

    Article  CAS  Google Scholar 

  11. Moniruzzaman, M., Nakashima, K., Kamiya, N., & Goto, M. (2010). Recent advances of enzymatic reactions in ionic liquids. Biochemical Engineering Journal, 48, 295–314.

    Article  CAS  Google Scholar 

  12. Liu, Y., Chen, D., Yan, Y., Peng, C., & Xu, L. (2011). Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresource Technology, 102, 10414–10418.

    Article  CAS  Google Scholar 

  13. Lee, S. H., Ha, S. H., Hiep, N. M., Chang, W. J., & Koo, Y. M. (2008). Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures. Journal of Biotechnology, 133, 486–489.

    Article  CAS  Google Scholar 

  14. Kaar, J. L. (2011). Lipase activation and stabilization in room-temperature ionic liquids. Methods in Molecular Biology, 679, 25–35.

    Article  CAS  Google Scholar 

  15. Attri, P., Venkatesu, P., & Kumar, A. (2011). Activity and stability of alpha-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Physical Chemistry Chemical Physics, 13, 2788–2796.

    Article  CAS  Google Scholar 

  16. Shah, S., & Gupta, M. N. (2007). Obtaining high transesterification activity for subtilisin in ionic liquids. Biochimica et Biophysica Acta, 1770, 94–98.

    Article  CAS  Google Scholar 

  17. Hong, E. S., Kwon, O. Y., & Ryu, K. (2008). Strong substrate-stabilizing effect of a water-miscible ionic liquid [BMIM][BF(4)] in the catalysis of horseradish peroxidase. Biotechnology Letters, 30, 529–533.

    Article  Google Scholar 

  18. Musa, M. M., Ziegelmann-Fjeld, K. I., Vieille, C., & Phillips, R. S. (2008). Activity and selectivity of W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus in organic solvents and ionic liquids: mono- and biphasic media. Organic and Biomolecular Chemistry, 6, 887–892.

    Article  CAS  Google Scholar 

  19. Wu, X., Zhao, B., Wu, P., Zhang, H., & Cai, C. (2009). Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. The Journal of Physical Chemistry. B, 113, 13365–13373.

    Article  CAS  Google Scholar 

  20. Shafiei, M., Ziaee, A. A., & Amoozegar, M. A. (2011). Purification and characterization of an organic-solvent-tolerant halophilic alpha-amylase from the moderately halophilic Nesterenkonia sp. strain F. Journal of Industrial Microbiology and Biotechnology, 38, 275–281.

    Article  CAS  Google Scholar 

  21. Karbalaei-Heidari, H. R., Ziaee, A. A., & Amoozegar, M. A. (2007). Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles, 11, 237–243.

    Article  CAS  Google Scholar 

  22. Bonhote, P., Dias, A. P., Papageorgiou, N., Kalyanasundaram, K., & Gratzel, M. (1996). Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry, 35, 1168–1178.

    Article  CAS  Google Scholar 

  23. Sanchez-Porro, C., Mellado, E., Bertoldo, C., Antranikian, G., & Ventosa, A. (2003). Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles, 7, 221–228.

    CAS  Google Scholar 

  24. Lama, L., Romano, I., Calandrelli, V., Nicolaus, B., & Gambacorta, A. (2005). Purification and characterization of a protease produced by an aerobic haloalkaliphilic species belonging to the Salinivibrio genus. Research in Microbiology, 156, 478–484.

    Article  CAS  Google Scholar 

  25. Shi, W., Tang, X. F., Huang, Y., Gan, F., Tang, B., & Shen, P. (2006). An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp. J7: gene cloning, expression and characterization. Extremophiles, 10, 599–606.

    Article  CAS  Google Scholar 

  26. Karbalaei-Heidari, H. R., Amoozegar, M. A., Hajighasemi, M., Ziaee, A. A., & Ventosa, A. (2009). Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. Journal of Industrial Microbiology and Biotechnology, 36, 21–27.

    Article  CAS  Google Scholar 

  27. Mala, M., & Srividya, S. (2010). Partial purification and properties of a laundry detergent compatible alkaline protease from a newly isolated Bacillus species Y. Indian Journal of Microbiology, 50, 309–317.

    Article  CAS  Google Scholar 

  28. Xu, J., Jiang, M., Sun, H., & He, B. (2010). An organic solvent-stable protease from organic solvent-tolerant Bacillus cereus WQ9-2: purification, biochemical properties, and potential application in peptide synthesis. Bioresource Technology, 101, 7991–7994.

    Article  CAS  Google Scholar 

  29. Deng, A., Wu, J., Zhang, Y., Zhang, G., & Wen, T. (2010). Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresource Technology, 101, 7111–7117.

    Google Scholar 

  30. Beg, Q. K., Saxena, R. K., & Gupta, R. (2002). Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnology and Bioengineering, 78, 289–295.

    Article  CAS  Google Scholar 

  31. Ningthoujam, D. S., Kshetri, P., Sanasam, S., & Nimaichand, S. (2009). Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermotolerant indigenous actinomycetes. World Applied Sciences Journal, 7, 907–916.

    CAS  Google Scholar 

  32. Karbalaei-Heidari, H. R., Ziaee, A.-A., Schaller, J., & Amoozegar, M. A. (2007). Purification and characterization of an extracellular haloalkaline protease produced by the moderately halophilic bacterium, Salinivibrio sp. strain AF-2004. Enzyme and Microbial Technology, 40, 266–272.

    Article  CAS  Google Scholar 

  33. Oberoi, R., Beg, Q. K., Puri, S., Saxena, R. K., & Gupta, R. (2001). Characterization and wash performance analysis of an SDS-stable alkaline protease from a Bacillus sp. World Journal of Microbiology and Biotechnology, 17, 493–497.

    Article  CAS  Google Scholar 

  34. Pandey, S., Rakholiya, K. D., Raval, V. H., & Singh, S. P. (2012). Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature. Journal of Bioscience and Bioengineering, 114, 251–256.

    Article  CAS  Google Scholar 

  35. Sinsuwan, S., Rodtong, S., & Yongsawatdigul, J. (2010). Purification and characterization of a salt-activated and organic solvent-stable heterotrimer proteinase from Virgibacillus sp. SK33 isolated from Thai fish sauce. Journal of Agricultural and Food Chemis ry, 58, 248–256.

    Article  CAS  Google Scholar 

  36. Gaur, S., Agrahari, S., & Wadhwa, N. (2010). Purification of protease from Pseudomonas thermaerum GW1 isolated from poultry waste site. Open Microbiology Journal, 4, 67–74.

    Article  CAS  Google Scholar 

  37. van Rantwijk, F., & Sheldon, R. A. (2007). Biocatalysis in ionic liquids. Chemical Reviews, 107, 2757–2785.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the Research Affairs of Shiraz University, Shiraz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Karbalaei-Heidari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karbalaei-Heidari, H.R., Shahbazi, M. & Absalan, G. Characterization of a Novel Organic Solvent Tolerant Protease from a Moderately Halophilic Bacterium and Its Behavior in Ionic Liquids. Appl Biochem Biotechnol 170, 573–586 (2013). https://doi.org/10.1007/s12010-013-0215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0215-1

Keywords

Navigation