Skip to main content
Log in

Structural Analysis and Aggregation Propensity of Reduced and Nonreduced Glycated Insulin Adducts

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The milieu within pancreatic β cells represents a favorable environment for glycation of insulin. Therefore, in this study, insulin samples were individually subjected to glycation under reducing and nonreducing conditions. As monitored by ortho-phthalaldehyde and fluorescamine assays, the reduced glycated insulin adduct demonstrates extensively higher level of glycation than the nonreduced glycated counterpart. Also, gel electrophoresis experiments suggest a significant impact of glycation under a reducing system on the level of insulin oligomerization. Furthermore, reduced and nonreduced glycated insulin adducts respectively exhibit full and partial resistance against dithiothreitol-induced aggregation. The results of thioflavin T and Congo red assays suggest the existence of a significant quantity of amyloid-like entities in the sample of reduced glycated insulin adduct. Both fluorescence and far-ultraviolet circular dichroism studies respectively suggest that the extents of unfolding and secondary structural alteration were closely correlated to the level of insulin glycation. Moreover, the surface tension of two glycated insulin adducts was inversely correlated to their glycation extents and to the quantity of exposed hydrophobic patches. Overall, the glucose-modified insulin molecules under reducing and nonreducing systems display different structural features having significant consequences on aggregation behaviors and surface tension properties. The particular structural constraints of glycated insulin may reduce the binding interaction of this hormone to its receptor which is important for both insulin function and clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nielsen, L., Frokjaer, S., Brange, J., Uversky, V. N., & Fink, A. L. (2001). Probing the mechanism of insulin fibril formation with insulin mutants. Biochemistry, 40, 8397–8409.

    Article  CAS  Google Scholar 

  2. Nystrom, F. H., & Quon, M. J. (1999). Insulin signalling: Metabolic pathways and mechanisms for specificity. Cellular Signalling, 11, 563–574.

    Article  CAS  Google Scholar 

  3. Ottensmeyer, F., Beniac, D. R., Luo, R. Z. T., & Yip, C. C. (2000). Mechanism of transmembrane signaling: Insulin binding and the insulin receptor. Biochemistry, 39, 12103–12112.

    Article  CAS  Google Scholar 

  4. Oliveira, L., Lages, A., Gomes, R., Neves, H., Familia, C., Coelho, A., et al. (2011). Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochemistry, 12, 41.

    Article  CAS  Google Scholar 

  5. Abdel-Wahab, Y., O'Harte, F., Barnett, C., & Flatt, P. (1997). Characterization of insulin glycation in insulin-secreting cells maintained in tissue culture. The Journal of Endocrinology, 152, 59–67.

    Article  CAS  Google Scholar 

  6. Abdel-Wahab, Y. H. A., O'Harte, F. P., Ratcliff, H., McClenaghan, N. H., Barnett, C. R., & Flatt, P. R. (1996). Glycation of insulin in the islets of langerhans of normal and diabetic animals. Diabetes, 45, 1489–1496.

    Article  CAS  Google Scholar 

  7. Abdel-Wahab, Y., O'Harte, F., Boyd, A., Barnett, C., & Flatt, P. (1997). Glycation of insulin results in reduced biological activity in mice. Acta Diabetologica, 34, 265–270.

    Article  CAS  Google Scholar 

  8. Mendez, D. L., Jensen, R. A., McElroy, L. A., Pena, J. M., & Esquerra, R. M. (2005). The effect of non-enzymatic glycation on the unfolding of human serum albumin. Archives of Biochemistry and Biophysics, 444, 92–99.

    Article  CAS  Google Scholar 

  9. Solá, R. J., & Griebenow, K. (2008). Effects of glycosylation on the stability of protein pharmaceuticals. Journal of Pharmaceutical Sciences, 98, 1223–1245.

    Article  Google Scholar 

  10. Westermark, P., Benson, M. D., Buxbaum, J. N., Cohen, A. S., Frangione, B., Ikeda, S. I., et al. (2005). Amyloid: Toward terminology clarification report from the nomenclature committee of the international society of amyloidosis. Amyloid, 12, 1–4.

    Article  CAS  Google Scholar 

  11. Ledesma, M. D., Bonay, P., Colaco, C., & Avila, J. (1994). Analysis of microtubule-associated protein tau glycation in paired helical filaments. The Journal of Biological Chemistry, 269, 21614–21619.

    CAS  Google Scholar 

  12. Loske, C., Gerdemann, A., Schepl, W., Wycislo, M., Schinzel, R., Palm, D., et al. (2001). Transition metal-mediated glycoxidation accelerates cross-linking of β-amyloid peptide. European Journal of Biochemistry, 267, 4171–4178.

    Article  Google Scholar 

  13. Hashimoto, N., Naiki, H., & Gejyo, F. (1999). Modification of beta 2-microglobulin with d-glucose or 3-deoxyglucosone inhibits A beta 2M amyloid fibril extension in vitro. Amyloid, 6, 256–264.

    Article  CAS  Google Scholar 

  14. Lee, D., Park, C. W., Paik, S. R., & Choi, K. Y. (2009). The modification of α-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochimica et Biophysica Acta, 1794, 421–430.

    Article  CAS  Google Scholar 

  15. Lo, T., Westwood, M. E., McLellan, A. C., Selwood, T., & Thornalley, P. J. (1994). Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine and bovine serum albumin. The Journal of Biological Chemistry, 269, 32299–32305.

    CAS  Google Scholar 

  16. Jia, X., Olson, D. J. H., Ross, A. R. S., & Wu, L. (2006). Structural and functional changes in human insulin induced by methylglyoxal. The FASEB Journal, 20, 1555–1557.

    Article  CAS  Google Scholar 

  17. O'Harte, F. P. M., Højrup, P., Barnett, C. R., & Flatt, P. R. (1996). Identification of the site of glycation of human insulin. Peptides, 17, 1323–1330.

    Article  Google Scholar 

  18. Guedes, S., Vitorino, R., Domingues, M. R. M., Amado, F., & Domingues, P. (2009). Mass spectrometry characterization of the glycation sites of bovine insulin by tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 20, 1319–1326.

    Article  CAS  Google Scholar 

  19. Brange, J., & Langkjcer, L. (1993). Insulin strueture and stability. Pharmaceutical Biotechnology, 5, 315.

    CAS  Google Scholar 

  20. Watkins, N., Thorpe, S., & Baynes, J. (1985). Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose. The Journal of Biological Chemistry, 260, 10629–10636.

    CAS  Google Scholar 

  21. Boyd, A. C., Abdel-Wahab, Y. H. A., McKillop, A. M., McNulty, H., Barnett, C. R., O’Harte, F. P. M., et al. (2000). Impaired ability of glycated insulin to regulate plasma glucose and stimulate glucose transport and metabolism in mouse abdominal muscle. Biochimica et Biophysica Acta, 1523, 128–134.

    Article  CAS  Google Scholar 

  22. Fayle, S. E., Healy, J. P., Brown, P. A., Reid, E. A., Gerrard, J. A., & Ames, J. M. (2001). Novel approaches to the analysis of the Maillard reaction of proteins. Electrophoresis, 22, 1518–1525.

    Article  CAS  Google Scholar 

  23. Schmitt, A., Schmitt, J., Münch, G., & Gasic-Milencovic, J. (2005). Characterization of advanced glycation end products for biochemical studies: Side chain modifications and fluorescence characteristics. Analytical Biochemistry, 338, 201–215.

    Article  CAS  Google Scholar 

  24. Sattarahmady, N., Moosavi-Movahedi, A. A., Ahmad, F., Hakimelahi, G. H., Habibi-Rezaei, M., Saboury, A. A., et al. (2007). Formation of the molten globule-like state during prolonged glycation of human serum albumin. Biochimica et Biophysica Acta, 1770, 933–942.

    Article  CAS  Google Scholar 

  25. Laemmli, U. (1970). Most commonly used discontinuous buffer system for SDS electrophoresis. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Schägger, H., & Von Jagow, G. (1987). Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.

    Article  Google Scholar 

  27. Yousefi, R., Jalili, S., Alavi, P., & Moosavi-Movahedi, A. A. (2012). The enhancing effect of homocysteine thiolactone on insulin fibrillation and cytotoxicity of insulin fibril. International Journal of Biological Macromolecules, 51, 291–298.

    Article  CAS  Google Scholar 

  28. Woods, L., Radford, S., & Ashcroft, A. (2012). Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. Biochimica et Biophysica Acta. doi:10.1016/j.bbapap.2012.10.002.

    Google Scholar 

  29. LeVine, H. (1999). Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods in Enzymology, 309, 274–284.

    Article  CAS  Google Scholar 

  30. Jalili, S., Yousefi, R., Papari, M. M., & Moosavi-Movahedi, A. A. (2011). Effect of homocysteine thiolactone on structure and aggregation propensity of bovine pancreatic insulin. The Protein Journal, 30, 299–307.

    Article  CAS  Google Scholar 

  31. Matulis, D., & Lovrien, R. (1998). 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophysical Journal, 74, 422–429.

    Article  CAS  Google Scholar 

  32. Hawe, A., Sutter, M., & Jiskoot, W. (2008). Extrinsic fluorescent dyes as tools for protein characterization. Pharmaceutical Research, 25, 1487–1499.

    Article  CAS  Google Scholar 

  33. Divsalar, A., Saboury, A., & Moosavi-Movahedi, A. A. (2006). Conformational and structural analysis of bovine β lactoglobulin-A upon interaction with Cr+3. The Protein Journal, 25, 157–165.

    Article  CAS  Google Scholar 

  34. Atri, M. S., Saboury, A. A., Yousefi, R., Dalgalarrondo, M., Chobert, J. M., Haertle, T., et al. (2010). Comparative study on heat stability of camel and bovine apo and holo alpha-lactalbumin. The Journal of Dairy Research, 77, 43–49.

    Article  CAS  Google Scholar 

  35. Böhm, G., Muhr, R., & Jaenicke, R. (1992). Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Pngineering, 5, 191–195.

    Article  Google Scholar 

  36. Kachooei, E., Moosavi-Movahedi, A. A., Khodagholi, F., Ramshini, H., Shaerzadeh, F., & Sheibani, N. (2012). Oligomeric forms of insulin amyloid aggregation disrupt outgrowth and complexity of neuron-like PC12 cells. PloS One, 7, e41344.

    Article  CAS  Google Scholar 

  37. Brownlee, M. (1992). Glycation products and the pathogenesis of diabetics complications. Diabetes Care, 15, 1835–1843.

    Article  CAS  Google Scholar 

  38. Takata, K., Horiuchi, S., Araki, N., Shiga, M., Saitoh, M., & Morino, Y. (1988). Endocytic uptake of nonenzymatically glycosylated proteins is mediated by scavenger receptor for aldehyde-modified proteins. The Journal of Biological Chemistry, 263, 14819–14825.

    CAS  Google Scholar 

  39. De Meyts, P., & Whittaker, J. (2002). Structural biology of insulin and IGF1 receptors: Implications for drug design. Nature Reviews. Drug Discovery, 1, 769–783.

    Article  Google Scholar 

  40. Brange, J. (1992). Chemical stability of insulin: Mechanisms and kinetics of chemical transformations in pharmaceutical formulation. Acta Pharmaceutica Nordica, 4, 209–222.

    CAS  Google Scholar 

  41. Brownlee, M. (2000). Negative consequences of glycation. Metabolism, 49, 9–13.

    Article  CAS  Google Scholar 

  42. Vitek, M. P., Bhattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R., et al. (1994). Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proceedings of the National Academy of Sciences, 91, 4766–4770.

    Article  CAS  Google Scholar 

  43. Castellani, R., Smith, M., Richey, G., & Perry, G. (1996). Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Research, 737, 195–200.

    Article  CAS  Google Scholar 

  44. Lyons, T. J., Silvestri, G., Dunn, J. A., Dyer, D. G., & Baynes, J. W. (1991). Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes, 40, 1010–1015.

    Article  CAS  Google Scholar 

  45. Dolhofer, R., & Wieland, O. (1979). Preparation and biological properties of glycosylated insulin. FEBS Letters, 100, 133–136.

    Article  CAS  Google Scholar 

  46. Morgan, F., Léonil, J., Mollé, D., & Bouhallab, S. (1999). Modification of bovine β-lactoglobulin by glycation in a powdered state or in an aqueous solution: effect on association behavior and protein conformation. Journal of Agricultural and Food Chemistry, 47, 83–91.

    Article  CAS  Google Scholar 

  47. Swamy, M., & Abraham, E. (1989). Inhibition of lens crystallin glycation and high molecular weight aggregate formation by aspirin in vitro and in vivo. Investigative Ophthalmology and Visual Science, 30, 1120–1126.

    CAS  Google Scholar 

  48. Ivanova, M. I., Sievers, S. A., Sawaya, M. R., Wall, J. S., & Eisenberg, D. (2009). Molecular basis for insulin fibril assembly. Proceedings of the National Academy of Sciences, 106, 18990–18995.

    Article  CAS  Google Scholar 

  49. Ali Khan, M. W., Rasheed, Z., Ali Khan, W., & Ali, R. (2007). Biochemical, biophysical, and thermodynamic analysis of in vitro glycated human serum albumin. Biochemistry (Moscow), 72, 146–152.

    Article  CAS  Google Scholar 

  50. Sattarahmady, N., Moosavi-Movahedi, A. A., & Habibi-Rezaei, M. (2011). A biophysical comparison of human serum albumin to be glycated in vivo and in vitro. Journal of Medical Biochemistry, 30, 5–10.

    Article  CAS  Google Scholar 

  51. Messina, P., Prieto, G., Dodero, V., Cabrerizo-Vílchez, M., Maldonado-Valderrama, J., Ruso, J. M., et al. (2006). Surface characterization of human serum albumin and sodium perfluorooctanoate mixed solutions by pendant drop tensiometry and circular dichroism. Biopolymers, 82, 261–271.

    Article  CAS  Google Scholar 

  52. Lin, F., Kwok, D., Policova, Z., Zingg, W., & Neumann, A. (1995). The effect of ph and concentration on the surface tension of adsorbed layers of various insulin preparations. Colloids and Surfaces. B, Biointerfaces, 3, 281–286.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support of Iran National Science Foundation (INSF)/grant number 88001578. The financial support of the research council of Shiraz University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Yousefi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alavi, P., Yousefi, R., Amirghofran, S. et al. Structural Analysis and Aggregation Propensity of Reduced and Nonreduced Glycated Insulin Adducts. Appl Biochem Biotechnol 170, 623–638 (2013). https://doi.org/10.1007/s12010-013-0207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0207-1

Keywords

Navigation