Skip to main content
Log in

Comparison of Yarrowia lipolytica and Pichia pastoris Cellular Response to Different Agents of Oxidative Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast cells exposed to adverse conditions employ a number of defense mechanisms in order to respond effectively to the stress effects of reactive oxygen species. In this work, the cellular response of Yarrowia lipolytica and Pichia pastoris to the exposure to the ROS-inducing agents’ paraquat, hydrogen peroxide, and increased air pressure was analyzed. Yeast cells at exponential phase were exposed for 3 h to 1 mM paraquat, to 50 mM H2O2, or to increased air pressure of 3 or 5 bar. For both strains, the cellular viability loss and lipid peroxidation was lower for the cells exposed to increased air pressure than for those exposed to chemical oxidants. The glutathione induction occurred only in Y. lipolytica strain and reached the highest level as a response to PQ exposure. In general, antioxidant enzymes were more expressed in Y. lipolytica than in P. pastoris. The enzyme superoxide dismutase was induced in both strains under all the oxidant conditions but was dependent on the cellular growth phase, being undetectable in non-growing cells, whereas glutathione reductase was more induced in those conditions. Hydrogen peroxide was the most efficient inducer of catalase. Both yeast cultures underwent no cellular growth inhibition with increased air pressure, indicating that these yeast species were able to adapt to the oxidative stressful environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Free Radical Biology & Medicine, 11, 81–128.

    Article  CAS  Google Scholar 

  2. Giller, G., & Sigler, K. (1995). Folia Microbiologica, 40(2), 131–152.

    Article  Google Scholar 

  3. Joaquim, A. F. V., Francisco, P. M., Ludovina, L., & Madeira, M. C. V. (2001). Journal of Biochemical and Molecular Toxicology, 15, 322–330.

    Article  Google Scholar 

  4. 1122Davies, J. M. S., Lowry, C. V., & Davies, K. J. A. (1995). Archives of Biochemistry and Biophysics, 317, 1–6.

    Article  CAS  Google Scholar 

  5. Belo, I., Pinheiro, R., & Mota, M. (2005). Journal of Biotechnology, 115, 397–404.

    Article  CAS  Google Scholar 

  6. Lopes, M., Gomes, N., Mota, M., & Belo, I. (2009). Applied Biochemistry and Biotechnology, 159(1), 46–53.

    Article  CAS  Google Scholar 

  7. Pinheiro, R., Belo, I., & Mota, M. (2003). Letters in Applied Microbiology, 37, 438–442.

    Article  CAS  Google Scholar 

  8. Coelho, M. A. Z., Amaral, P. F. F., & Belo, I. (2010). Applied Biochemistry and Biotechnology, 930-944.

  9. Zhang, J.-h., Wu, D., Chen, J., & Wu, J. (2011). Biotechnology and Bioprocess Engineering, 16, 1196–1200.

    Article  CAS  Google Scholar 

  10. Wang, K., Li, G., Yu, S. Q., Zhang, C. T., & Liu, Y. H. (2010). Applied Microbiology and Biotechnology, 88, 155–165.

    Article  CAS  Google Scholar 

  11. Oliveira, C., Felix, W., Moreira, R. A., Teixeira, J. A., & Domingues, L. (2008). Protein Expression and Purification, 60, 188–193.

    Article  CAS  Google Scholar 

  12. Potvin, G., Ahmad, A., & Zhang, Z. (2012). Biochemical Engineering Journal, 64, 91–105.

    Article  CAS  Google Scholar 

  13. Jones, R.-P. (1987). Process Biochemistry, 118-128.

  14. Pinheiro, R., Belo, I., & Mota, M. (2000). Enzyme and Microbial Technology, 26, 756–762.

    Article  CAS  Google Scholar 

  15. Beers, R. F., & Sizer, I. W. (1952). Journal of Biological Chemistry, 195, 276–287.

    Google Scholar 

  16. Marklund, S., & Marklund, G. (1974). European Journal of Biochemistry, 47, 469–474.

    Article  CAS  Google Scholar 

  17. Smith, I., Viertheller, T., & Thorne, C. (1988). Analytical Biochemistry, 175, 408–413.

    Article  CAS  Google Scholar 

  18. Espindola, A. S., Gomes, D. S., Panek, A. D., & Eleutherio, E. A. (2003). Cryobiology, 47, 236–241.

    Article  CAS  Google Scholar 

  19. Jamnik, P., & Raspor, P. (2003). Journal of Biochemistry and Molecular Biology, 17(6), 316–323.

    CAS  Google Scholar 

  20. Hassan, H. M., & Fridovich, I. (1978). Journal of Biological Chemistry, 253(22), 8143–8148.

    CAS  Google Scholar 

  21. Pinheiro, R., Belo, I., & Mota, M. (2002). Applied Microbiology and Biotechnology, 58, 842–847.

    Article  CAS  Google Scholar 

  22. Ghazi-Khansari, M., Mohammadi-bardbori, A., & Hosseini, M. J. (2006). Annals of the New York Academy of Sciences, 1090, 98–107.

    Article  CAS  Google Scholar 

  23. Grant, C. M., MacIver, F. H., & Dawes, I. W. (1996). Current Genetics, 29, 511–515.

    Article  CAS  Google Scholar 

  24. Izawa, S., Inoue, Y., & Kimura, A. (1995). FEBS Letters, 368, 73–76.

    Article  CAS  Google Scholar 

  25. Pigeolet, E., Corbisier, P., Houbion, A., Lambert, D., Michiels, C., Raes, M., et al. (1990). Mechanisms of Ageing and Development, 51, 283–297.

    Article  CAS  Google Scholar 

  26. Lushchak, V., Semchyshyn, H., Lushchak, O., & Mandryk, S. (2005). Biochemical and Biophysical Research Communications, 338, 1739–1744.

    Article  CAS  Google Scholar 

  27. Abbeg, M. A., Alabarse, P. V. G., Casanova, A., Hoscheid, J., Salomon, T. B., Hackenhaar, F. S., et al. (2010). Mycopathologia, 170, 11–20.

    Article  Google Scholar 

  28. Biryukova, E. N., Medentsev, A. G., Arinbasarova, A. Y., & Akimenko, V. K. (2006). Microbiology, 75(3), 243–247.

    Article  CAS  Google Scholar 

  29. Braconi, D., Possenti, S., Laschi, M., Geminiani, M., Lusini, P., Bernardini, G., et al. (2008). Journal of Agricultural and Food Chemistry, 56, 3836–3845.

    Article  CAS  Google Scholar 

  30. Lushchak, V. I. (2011). Comparative Biochemistry and Physiology. C, 153, 175–190.

    Google Scholar 

  31. Semchyshyn, H. M., & Lozinska, L. M. (2012). FEMS Yeast Research, 12, 761–773.

    Article  CAS  Google Scholar 

  32. González-Párraga, P., Hernández, J. A., & Argüelles, J. C. (2003). Yeast, 20, 1161–1169.

    Article  Google Scholar 

  33. Kreiner, M., Harvey, L. M., & McNeil, B. (2002). Enzyme and Microbial Technology, 30, 346–353.

    Article  CAS  Google Scholar 

  34. Bayliak, M. M., Semchyshyn, H. M., & Lushchak, V. I. (2006). Biochemistry (Moscow), 71, 1013–1020.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by “Fundação para a Ciência e Tecnologia” (Grant SFRH/BD/47371/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Mota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, M., Mota, M. & Belo, I. Comparison of Yarrowia lipolytica and Pichia pastoris Cellular Response to Different Agents of Oxidative Stress. Appl Biochem Biotechnol 170, 448–458 (2013). https://doi.org/10.1007/s12010-013-0205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0205-3

Keywords

Navigation