Skip to main content
Log in

Different Responses to N+ Beam Implantation Between Diploid and Autotetraploid Rice

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of the study is to investigate the biological effects of N+ beam implantation in different ploidy rice. N+ beam implantation had increase effect in tillers number, spikelet fertility, grain yield per plant, si-phellem cell size, photosynthetic rate, transpiration rate, flag leaf dry weight, flag leaf culm dry weight, stomatal length, vascular bundle area, and protein and starch content and decrease effect in 1,000-grain weight, stomatal width and chlorophyll, calcium, sodium, and zinc content for all rice lines. N+ beam implantation had opposite effect on diploid and autotetraploid rice lines in vascular bundle area, stomatal complexes areas, epidermal cell size, era length, area of air spaces, midrib length, papilla number, flag leaf length, flag leaf width, flag leaf area, and cadmium, copper, ferrum, magnesium and phosphorus content. Twenty traits of diploid line and ten traits of autotetraploid line are significantly increased by N+ beam in this experiment, ranging from 6.8 to 362.7 % in diploid line and 7.9 to 131.7 % in autotetraploid line. Six traits of diploid lines and 15 traits of autotetraploid line are significantly decreased by N+ beam implantation in this experiment, ranging from 8.9 to 87.4 % in diploid line and 5.6 to 88.5 % in autotetraploid line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(4) :

Autotetraploid rice line

(2) :

Diploid rice line

References

  1. Association of Official Analytical Chemists (AOAC). (1995). Association of Official Analytical Chemists official method of analysis, 16th edn [M]. Method 990.03 (pp. 35–43). Washington, DC: The Association.

    Google Scholar 

  2. Bao, W. K., & Yan, Y. R. (1956). A preliminary report on investigations of autopolyploids and amphidiploid in some cereal crops. Acta Botanica, 5, 297–316.

    Google Scholar 

  3. Cai, D. T., Chen, J. G., Chen, D. L., et al. (2005). Exploring new way to solve the potential crisis of food shortage by polyploid rice. In: 5th International Rice Genetics Symposium. 19–23 Nov. Manila, Philippines. IRRI, p. 58.

  4. Cai, D. T., Chen, J. G., Chen, D. L., et al. (2007). The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Science in China. Series C, Life Sciences, 37(2), 217–226 (in Chinese).

    Google Scholar 

  5. Chang, J. H., Luo, Y. W., & Wang, B. Y. (1999). Study on the uses and improvements of autotetraploid sorghum. Acta Agriculture Boxeali Sinica, 1, 89–93.

    Google Scholar 

  6. Chen, Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 15, 57–71.

    Article  CAS  Google Scholar 

  7. Chesnokov, Y. V., & Manteuffel, R. (2000). Dose effect of UV-B irradiation on pollen tube growth and seed-specific promoter activities in irradiated pollen grains of Nicotiana plumbaginifolia. Sexual Plant Reproduction, 12(361), 364.

    Google Scholar 

  8. Dai, X. M., Huang, Q. C., Li, G. P., et al. (2006). Study of genetics and embryology of polyembryonic mutant of autopolyploid rice induce by N+ beam implantation. Plasma Science and Technology, 8(6), 745–750.

    Article  CAS  Google Scholar 

  9. Guo, X. P., Qin, R. Z., & Chen, X. (2002). Factors affecting production of autotetraploid rice. Journal of Plant Genetic Resources, 3, 30–33.

    Google Scholar 

  10. He, L. Z., Zhou, P. H., Liu, X. M., et al. (1997). Studies on the autotetraploid of Triarrhena lutarioriparia L. Liou. sp. nov. Acta Genetica Sinica, 24, 544–549.

    Google Scholar 

  11. He, Y. C., Wei, Q. J., Ge, J., et al. (2010). Genome duplication effects on pollen development and the interrelated physiological substances in tetraploid rice with polyploid meiosis stability. Planta, 232, 1219–1228.

    Article  CAS  Google Scholar 

  12. He, Y. C., Ge, J., Wei, Q., et al. (2011). Using a polyploid meiosis stability (PMeS) line as a parent improves embryo development and the seed set rate of a tetraploid rice hybrid. Plant Science, 91, 325–335.

    Google Scholar 

  13. Hegarty, M. J., & Hiscock, S. J. (2008). Genomic clues to the evolutionary success of polyploid plants. Current Biology, 18, 435–444.

    Article  Google Scholar 

  14. Hipkins, M. F., & Baker, N. R. (1986). Spectroscopy. In M. F. Hipkins & N. R. Baker (Eds.), Photosynthesis energy transduction: a practical approach (pp. 63–64). Oxford: IRL.

    Google Scholar 

  15. Huang, Q. C., & Li, X. Q. (2008). Intrinsic value of germinating chromosome sets in Oryza plants. Hybrid Rice, 23(1), 6.

    Google Scholar 

  16. Huang, Q. C., Sun, J. S., & Bai, S. L. (1998). Polymorphism of male and female gametophytes in autotetraploidy rice. Hybrid Rice, 14, 32–33.

    Google Scholar 

  17. Huang, Q. C., Xiang, M. C., & Tang, G. X. (2002). Embryological mechanism of bearing seeds in the cross of autotetraploid rice with Leersia hexandra. Acta Agriculturae Nucleatae Sinica, 28, 286–288.

    Google Scholar 

  18. Huang, Q. C., Dai, X. M., & Li, Y. F. (2005). Studies on polyploidizing induction technique in rice. Hybrid Rice, 20, 54–56.

    Google Scholar 

  19. Khush, G. S. (1997). Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology, 35, 25–34.

    Article  CAS  Google Scholar 

  20. Li, S. X. (2003). Several problems on autopolyptoid breeding in plants. Acta Bot Boreal-Occident Sinica, 23, 1829–1841.

    Google Scholar 

  21. Li, A. H., & He, L. Z. (1998). Study on meiotic behaviors and fertility of the autotetraploid of day lily. Journal of Hunan Agricultural University, 24, 14–17.

    Google Scholar 

  22. Li, G. P., Huang, Q. C., Qin, G. Y., & Huo, Y. P. (2005). The effects of low-energy nitrogen ion implantation on pollen exine substructure and pollen germination of Cedrus deodara. Plasma Science and Technology, 7, 3176–3180.

    Article  CAS  Google Scholar 

  23. Lin, R., & Huang, Q. C. (1999). Study on the character gametophytes of autotetraploidy rice (ZX-4) before and after fecundation. Aviso of Agricultural Science Sinica, 5, 30–33.

    Google Scholar 

  24. Oka, H. I. (1958). Intervarietal variation and classification of cultivated 18: rice. Indian Journal of Genetics and Plant Breeding, 18, 79–89.

    Google Scholar 

  25. Otto, S. P., & Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437.

    Article  CAS  Google Scholar 

  26. Peixea, A., Campos, M. D., & Cavaleiroa, C. (2000). Gamma-irradiated pollen induces the formation of 2n endosperm and abnormal embryo development in European plum (Prunus domestica L., cv. ‘Raina Claudia Verde’). Scientia Horticulturae, 86, 267–278.

    Article  Google Scholar 

  27. Rieseberg, L. H., & Willis, J. H. (2007). Plant speciation. Science, 317, 910–914.

    Article  CAS  Google Scholar 

  28. Steward, G. W. (2004). The relation between pairing preference and chiasma frequency in tetrasomics of rye. Genome (Ottawa), 47, 122–134.

    Article  Google Scholar 

  29. Wang, H. B., Gao, X. W., Guo, J. H., et al. (2002). Genetic transformation of watermelon with pumpkin DNA by low energy ion beam-mediated introduction. Plasma Science and Technology, 4, 1591–1596.

    Article  CAS  Google Scholar 

  30. Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Biology, 42, 225–249.

    Article  CAS  Google Scholar 

  31. Yang, J. I. (2001). The formation and evolution of polyploidy genomes in plants. Acta Phytotaxonomica Sinica, 39, 357–371.

    Google Scholar 

  32. Yu, Z. L. (2000). Ion beam application in genetic modification. IEEE Transactions on Plasma Science, 28(1), 128–131.

    Article  CAS  Google Scholar 

  33. Yu, Z. L. (2002). Study on low-energy heavy ion biology and its application undertaken in China, The Third National Conference of Ion Beam Bioengineering, The First International Symposium on Ion Beams: Biological Effects and Molecular Mechanisms, Urumqi, China, July (in Chinese).

  34. Yu, Z. L., Deng, J. G., He, J. J., et al. (1991). Mutation breeding by ion implantation. Nuclear Instruments and Methods in Physics Research B, 59/60, 705–708.

    Article  Google Scholar 

  35. Yu, Z. L., Yang, J. B., Wu, Y. J., et al. (1993). Transferring Gus gene into intact rice cells by low energy ion beam. Nuclear Instruments and Methods in Physics Research B, 80/81, 1328–1331.

    Article  Google Scholar 

  36. Zelles, L., & Seibold, H. W. (1976). Radiation-induced pollen tube growth stimulation of Pinus silvestris. Environmental and Experimental Botany, 16(1), 15–22.

    Article  Google Scholar 

  37. Zhu, B. C., & Gao, L. R. (1988). A study on autotetraploid common buckwheat. Hereditas (Beijing), 10, 6–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunce Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Huang, Q., Qin, G. et al. Different Responses to N+ Beam Implantation Between Diploid and Autotetraploid Rice. Appl Biochem Biotechnol 170, 552–561 (2013). https://doi.org/10.1007/s12010-013-0204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0204-4

Keywords

Navigation