Skip to main content
Log in

Cr(III) and Cr(VI) Removal from Aqueous Solutions by Cheaply Available Fruit Waste and Algal Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study compared the effectiveness of different biosorbents, viz. materials commonly present in natural treatment systems (Scenedesmus quadricauda and reed) and commonly produced fruit wastes (orange and banana peel) to remove Cr(III) and Cr(VI) from a synthetic wastewater simulating tannery wastewater. The Cr(III) removal efficiency followed the order S. quadricauda > orange peel > banana peel > reed, whereas the Cr(VI) removal followed the order banana peel > S. quadricauda > reed > orange peel. The chromium biosorption kinetics were governed by the intraparticle diffusion mechanism. Isotherm data obtained using the different biosorbents were fitted to the Langmuir, Freundlich, and SIPS models, revealing that the experimental data followed most closely the monolayer sorption theory-based Langmuir model than the other models. The maximum Cr(III) sorption capacity, calculated using the Langmuir model, was found to be 12 and 9 mg/g for S. quadricauda and orange peel, respectively, and the maximum Cr(VI) sorption capacity calculated for banana peel was 3 mg/g. The influence of biosorbent size, pH, solid–liquid ratio, and competing ions were examined for Cr(III) biosorption by S. quadricauda and orange peel and for Cr(VI) sorption by banana peel. The solution pH was found to be the most influential parameter affecting the biosorption process: whereas pH 5 was found to be optimum for maximum removal of Cr(III), Cr(VI) was best removed at a pH as low as 3. Interference to chromium sorption by various ions revealed that Cr(III) binding onto orange peel occurs through electrostatic forces, whereas Cr(VI) binding onto banana peel through non-electrostatic forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu, Y., Zhang, S., Guo, X., & Huang, H. (2008). Bioresource Technology, 99, 7709–7715.

    Article  CAS  Google Scholar 

  2. Ortega, L. M., Lebrun, R., Noël, I. M., & Hausler, R. (2005). Separation and Purification Technology, 44, 45–52.

    Article  CAS  Google Scholar 

  3. Low, K. S., Lee, C. K., & Ng, A. Y. (1999). Bioresource Technology, 68, 205–208.

    Article  CAS  Google Scholar 

  4. Fahim, N. F., Barsoum, B. N., Eid, A. E., & Khalil, M. S. (2006). Journal of Hazardous Materials, 136, 303–309.

    Article  CAS  Google Scholar 

  5. Tadesse, I., Isoaho, S. A., Green, F. B., & Puhakka, J. A. (2006). Bioresource Technology, 97, 529–534.

    Article  CAS  Google Scholar 

  6. Gode, F., & Pehlivan, E. (2006). Journal of Hazardous Materials, 136, 330–337.

    Article  CAS  Google Scholar 

  7. Apte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Journal of Hazardous Materials, 121, 215–222.

    Article  CAS  Google Scholar 

  8. Gowd, S., Reddy, M. R., & Govil, P. K. (2010). Journal of Hazardous Materials, 174, 113–121.

    Article  CAS  Google Scholar 

  9. Allen, S. J., & Brown, P. A. (1995). Journal of Chemical Technology and Biotechnology, 62, 17–24.

    Article  CAS  Google Scholar 

  10. Blázquez, G., Hernáinz, F., Calero, M., Martín-Lara, M. A., & Tenorio, G. (2009). Chemical Engineering Journal, 148, 473–479.

    Article  Google Scholar 

  11. Mwinyihija, M. (2010). Ecotoxicological diagnosis in the tanning industry (1st ed.). New York: Springer.

    Book  Google Scholar 

  12. Schiewer, S., & Patil, S. B. (2008). Journal of Hazardous Materials, 157, 8–17.

    Article  CAS  Google Scholar 

  13. Ergene, A., Ada, K., Tan, S., & Katircioğlu, H. (2009). Desalination, 249, 1308–1314.

    Article  CAS  Google Scholar 

  14. Elangovan, R., Philip, L., & Chandraraj, K. (2008). Journal of Hazardous Materials, 152, 100–112.

    Article  CAS  Google Scholar 

  15. Barrera, H., Ureña-Núñez, F., Bilyeu, B., & Barrera-Díaz, C. (2006). Journal of Hazardous Materials, 136, 846–853.

    Article  CAS  Google Scholar 

  16. Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Research Journal of Chemistry and Environment, 7, 71–79.

    CAS  Google Scholar 

  17. Pakshirajan, K., Izquierdo, M., Lens, P.N.L. (2013). Separation Science and Technology, 48, 1111–1122.

    Google Scholar 

  18. Ho, Y. S., & McKay, G. (1999). Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  19. Zhou, L., Wang, Y., Liu, Z., & Huang, Q. (2009). Journal of Hazardous Materials, 161, 995–1002.

    Article  CAS  Google Scholar 

  20. Ncibi, M. C., Mahjoub, B., & Seffen, M. (2008). Bioresource Technology, 99, 5582–5589.

    Article  CAS  Google Scholar 

  21. Chaithanya, T. K., & Yedla, S. (2010). Environmental Technology, 31, 1495–1505.

    Article  CAS  Google Scholar 

  22. Balasubramanian, S., & Pugalenthi, V. (1999). Talanta, 50, 457–467.

    Article  CAS  Google Scholar 

  23. Zubair, A., Bhatti, H. N., Hanif, M. A., & Shafqat, F. (2008). Water Air Soil Poll., 191, 305–318.

    Article  CAS  Google Scholar 

  24. Malkoc, E., & Nuhoglu, Y. (2007). Separation and Purification Technology, 54, 291–298.

    Article  CAS  Google Scholar 

  25. Sahmoune, M. N., Louhab, K., & Boukhiar, A. (2011). Environmen. Prog. Sustain. Energy, 30, 284–293.

    Article  CAS  Google Scholar 

  26. Marín, A. B. P., Aguilar, M. I., Meseguer, V. F., Ortuño, J. F., Sáez, J., & Lloréns, M. (2009). Chemical Engineering Journal, 155, 199–206.

    Article  Google Scholar 

  27. Agarwal, G. S., Bhuptawat, H. K., & Chaudhari, S. (2006). Bioresource Technology, 97, 949–956.

    Article  CAS  Google Scholar 

  28. Memon, J. R., Memon, S. Q., Bhanger, M. I., El-Turki, A., Hallam, K. R., & Allen, G. C. (2009). Colloids and Surfaces B, 70, 232–237.

    Article  CAS  Google Scholar 

  29. Murphy, V., Hughes, H., & McLoughlin, P. (2007). Water Research, 41, 731–740.

    Article  CAS  Google Scholar 

  30. Albadarin, A. B., Al-Muhtaseb, A. A. H., Walker, G. M., Allen, S. J., & Ahmad, M. N. M. (2011). Desalination, 274, 64–73.

    Article  CAS  Google Scholar 

  31. Vijayaraghavan, K., Padmesh, T. V. N., Palanivelu, K., & Velan, M. (2006). Journal of Hazardous Materials, 133, 304–308.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the BOYSCAST fellowship (SR/BY/L-19/10), Department of Science and Technology (India) and the Netherlands Fellowship Programme, offered by the Dutch government for students of developing countries, for their support in carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Pakshirajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakshirajan, K., Worku, A.N., Acheampong, M.A. et al. Cr(III) and Cr(VI) Removal from Aqueous Solutions by Cheaply Available Fruit Waste and Algal Biomass. Appl Biochem Biotechnol 170, 498–513 (2013). https://doi.org/10.1007/s12010-013-0202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0202-6

Keywords

Navigation