Skip to main content
Log in

The Kinetics Behavior of the Reduction of Formaldehyde Catalyzed by Alcohol Dehydrogenase (ADH) and Partial Uncompetitive Substrate Inhibition by NADH

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alcohol dehydrogenase (ADH) catalyzes the final step in the biosynthesis of methanol from CO2. Here, we report the steady-state kinetics for ADH, using a homogeneous enzyme preparation with formaldehyde as the substrate and nicotinamide adenine dinucleotide (NADH) as the cofactor. When changing NADH concentrations with the fixed concentrations of HCHO (more or less than NADH), kinetic studies revealed a particular zigzag phenomenon for the first time. Increasing formaldehyde concentration can weaken substrate inhibition and improve catalytic efficiency. The kinetic mechanism of ADH was analyzed using the secondary fitting method. The double reciprocal plots (1/v∼1/[HCHO] and 1/[NADH]) strongly demonstrated that the substrate inhibition by NADH was uncompetitive versus formaldehyde and partial. In the direction of formaldehyde reduction, ADH has an ordered kinetic mechanism with formaldehyde adding to enzyme first and product methanol released last. The second reactant NADH can combine with the enzyme–methanol complex and then methanol dissociates from it at a slower rate than from enzyme–methanol. The reaction velocity depends on the relative rates of the alternative pathways. The addition of NADH also accelerates the releasing of methanol. As a result, substrate inhibition and activation occurred intermittently, and the zigzag double reciprocal plot (1/v∼1/[NADH]) was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park, S. W., et al. (2001). Appl. Catal. A, 211, 81–90.

    Article  CAS  Google Scholar 

  2. Zhang, L. X., Zhang, Y. C., & Chen, S. Y. (2012). Appl. Catal. A, 415, 118–123.

    Article  Google Scholar 

  3. Qu, J. P., Zhang, X. G., Wang, Y. G., & Xie, C. X. (2005). Electrochim Acta, 50, 3576–3580.

    Article  CAS  Google Scholar 

  4. Popic, J. P., Avramov-Ivic, M. L., & Vukovic, N. B. (1997). J Electroanal Chem, 421, 105–110.

    Article  CAS  Google Scholar 

  5. Addo, P. K., Arechederra, R. L., Waheed, A., & Shoemaker, J. D. (2011). Electrochem. Solid St, 14, 9–13.

    Article  Google Scholar 

  6. Subrahmanyam, M., Kaneco, S., & Alonso-Vante, N. (1999). Appl Catal, B, 23, 169–174.

    Article  CAS  Google Scholar 

  7. Parkinson, B. A., & Weaver, P. F. (1984). Nature, 309, 148–149.

    Article  CAS  Google Scholar 

  8. Hollmann, F., Arends, I. W. C. E., & Holtmann, D. (2011). Green Chem, 13, 2285–2313.

    Article  CAS  Google Scholar 

  9. Kuwabata, S., Tsuda, R., & Yoneyama, H. (1994). J Am Chem Soc, 116, 5437–5443.

    Article  CAS  Google Scholar 

  10. Amao, Y., & Watanabe, T. (2004). Chem Lett, 33, 1544–1545.

    Article  CAS  Google Scholar 

  11. Obert, R., & Dave, B. C. (1999). J Am Chem Soc, 121, 12192–12193.

    Article  CAS  Google Scholar 

  12. Dave, B. and Carbondale, I. L. (2002) U.S. Patent. US 6,440,711 B1.

  13. El-Zahab, B. E., Donnelly, D., & Wang, P. (2008). Biotechnol Bioeng, 99, 508–514.

    Article  CAS  Google Scholar 

  14. Wu, H., Huang, S. F., & Jiang, Z. Y. (2004). Catal Today, 98, 545–552.

    Article  CAS  Google Scholar 

  15. Alberty, R. A. (2007). J. Phys. Chem. B, 111, 14064–14068.

    Article  CAS  Google Scholar 

  16. Alberty, R. A. (2007). J. Phys. Chem. B, 111, 3847–3852.

    Article  CAS  Google Scholar 

  17. Baskaya, F. S., Zhao, X. Y., Flickinger, M. C., & Wang, P. (2010). Appl Biochem Biotechnol, 162, 391–398.

    Article  CAS  Google Scholar 

  18. Sofer, W., & Martin, P. F. (1987). Annu Rev Genet, 21, 203–225.

    Article  CAS  Google Scholar 

  19. Leskovac, V., Trivic, S., & Peričin, D. (2002). Fems Yeast Res, 2, 481–494.

    CAS  Google Scholar 

  20. Edenberg, H. J., & Bosron, W. F. (2010). In C. A. McQueen (Ed.), Comprehensive toxicology (pp. 111–130). Oxford: Academic. vol. 4.

    Chapter  Google Scholar 

  21. Moore, C. M., Minteer, S. D., & Martin, R. S. (2005). Lab Chip, 5, 218–225.

    Article  CAS  Google Scholar 

  22. Sher, K. J., Grekin, E. R., & Williams, N. A. (2005). Annu. Rev. Clin. Psycho, 1, 493–523.

    Article  Google Scholar 

  23. Luo, X., Kranzler, H. R., Zuo, L., Wang, S., Schork, N. J., & Gelernter, J. (2007). Hum Mol Genet, 16, 380–390.

    Article  CAS  Google Scholar 

  24. Hammes-Schiffer, S., & Benkovic, S. J. (2006). Annu Rev Biochem, 75, 519–541.

    Article  CAS  Google Scholar 

  25. Theorell, H., & McKee, J. S. (1961). Nature, 192, 47–50.

    Article  CAS  Google Scholar 

  26. Ganzhorn, A. J., Green, D. W., Hershey, A. D., Gould, R. M., & Plapp, B. V. (1987). J Biol Chem, 262, 3754–3761.

    CAS  Google Scholar 

  27. Lee, S. L., Shih, H. T., Chi, Y. C., Li, Y. P., & Yin, S. J. (2011). Chem-Biol. Interact, 191, 26–31.

    Article  CAS  Google Scholar 

  28. Raval, D. N., & Wolfe, R. G. (1962). Biochemistry, 2, 220–224.

    Article  Google Scholar 

  29. Orsi, B. A., & Cleland, W. W. (1972). Biochemistry, 11, 102–109.

    Article  CAS  Google Scholar 

  30. Cook, P. F. and Cleland, W. W. (2007) London: Garland Science

  31. Dalziel, K., & Dickinson, F. M. (1966). Biochem J, 100, 34–46.

    CAS  Google Scholar 

  32. Dalziel, K., & Dickinson, F. M. (1966). Biochem J, 100, 491–500.

    CAS  Google Scholar 

  33. Uchiyama, S., Matsushima, E., Aoyagi, S., & Ando, M. (2004). Anal Chem, 76, 5849–5854.

    Article  CAS  Google Scholar 

  34. Bevington, P. R. and Robinson, K. D. (2003) Boston: McGraw Hill

  35. Gangloff, A., Garneau, A., Huang, Y. W., Yang, F., & Lin, S. X. (2001). Biochem J, 356, 269–276.

    Article  CAS  Google Scholar 

  36. Theorell, H., & McKinley-Mckee, J. S. (1961). Acta Chem. Scand, 15, 1811–1833.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (20806009, 20976012) and the Specialized Research Fund for the Doctoral Program of Higher Education (20070007055, 20091101110035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, N., Liu, W., Hou, Y. et al. The Kinetics Behavior of the Reduction of Formaldehyde Catalyzed by Alcohol Dehydrogenase (ADH) and Partial Uncompetitive Substrate Inhibition by NADH. Appl Biochem Biotechnol 170, 370–380 (2013). https://doi.org/10.1007/s12010-013-0199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0199-x

Keywords

Navigation