Skip to main content

Advertisement

Log in

Ultrasound-Enhanced Recovery of Butanol/ABE by Pervaporation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The search for renewable sources of energy has led to renewed interests on the biochemical route for the production of butanol. Butanol production suffers from several drawbacks, mainly caused by butanol inhibition to the butanol-producing microorganism which makes it economically uncompetitive against the chemical process. One possible solution proposed is the in situ recovery of acetone–butanol–ethanol (ABE). Among the in situ recovery options, membrane processes like pervaporation have a great potential. Thus, the effects of temperature, feed concentration, and ultrasound irradiation on permeate concentration and permeation flux for the recovery of butanol/ABE by pervaporation from aqueous solutions were investigated in this study. In the butanol–water system, permeate butanol concentration as well as flux increased with an increase in temperature and butanol feed concentration. When pervaporation studies with ABE–water mixture were carried out at 60 °C for 2, 4, 8, 16, and 24 h, pervaporation profile revealed an optimal permeate concentration as well as permeation flux. Applications of ultrasound irradiation on pervaporation improved permeate concentration by about 23 g/L for both butanol and ABE. Ultrasound irradiation also improved butanol and ABE mass permeation flux by about 13 and 11 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng, J. J., & Timilsina, G. R. (2011). Status and barriers of advanced biofuel technologies: A review. Renew Energ, 36, 3541–3549.

    Article  CAS  Google Scholar 

  2. Srinivasan, S. (2009). The food v. fuel debate: A nuanced view of incentive structures. Renew Energ, 34, 950–954.

    Article  Google Scholar 

  3. Hoekman, S. K. (2009). Biofuels in the U.S.—challenges and opportunities. Renew Energ, 34, 14–22.

    Article  CAS  Google Scholar 

  4. Green, E. M. (2011). Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol, 22, 1–7.

    Article  Google Scholar 

  5. Kharkwal, S., Karimil, I. A., Chang, M. W., & Lee, D. Y. (2009). Strain improvement and process development for biobutanol production. Recent Pat Biotechnol, 3, 202–210.

    Article  CAS  Google Scholar 

  6. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J. H., & Jung, K. S. (2008). Fermentative butanol production by Clostridia. Biotechnol Bioeng, 101, 209–228.

    Article  CAS  Google Scholar 

  7. Jones, D. T., & Keis, S. (1995). Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev, 17, 223–232.

    Article  CAS  Google Scholar 

  8. Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiol Rev, 50, 484–524.

    CAS  Google Scholar 

  9. Shen, C. R., Lan, E. I., Dekishima, Y., Baez, A., Cho, K. M., & Liao, J. C. (2011). Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol, 77, 2905–2915.

    Article  CAS  Google Scholar 

  10. Oudshoorn, A., van der Wielen, L. A. M., & Straathof, A. J. J. (2009). Assessment of options for selective 1-butanol recovery from aqueous solution. Ind Eng Chem Res, 48, 7325–7336.

    Article  CAS  Google Scholar 

  11. Shi, Z. P., Zhang, C. Y., Chen, J. X., & Mao, Z. G. (2005). Performance evaluation of acetone–butanol continuous flash extractive fermentation process. Bioprocess Biosyst Eng, 27, 175–183.

    Article  CAS  Google Scholar 

  12. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2007). Bioproduction of butanol from biomass: From genes to bioreactors. Curr Opin Biotechnol, 18, 220–227.

    Article  CAS  Google Scholar 

  13. Mulder, M. H. V., & Smolders, C. A. (1984). On the mechanism of separation ethanol/water mixtures by pervaporation. Part I: calculation of concentration profiles. J Membr Sci, 17, 289–307.

    Article  CAS  Google Scholar 

  14. Kujawski, W. (2000). Application of pervaporation and vapor, permeation in environmental protection. Pol J Environ Stud, 9, 13–26.

    CAS  Google Scholar 

  15. Baker, R. W. (2004). Membrane technology and applications (2nd ed.). Chichester: Wiley.

    Book  Google Scholar 

  16. Vane, L. M. (2005). A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol, 80, 603–625.

    Article  CAS  Google Scholar 

  17. Qureshi, N., & Blaschek, H. P. (1999). Butanol recovery from model solution/fermentation broth by pervaporation: Evaluation of membrane performance. Biomass Bioenerg, 17, 175–184.

    Article  CAS  Google Scholar 

  18. Pouget, E., Tonnar, J., Lucas, P., Lacroix-Desmazes, P., Ganachaud, F., & Boutevin, B. (2010). Well-architectured poly(dimethylsiloxane)-containing copolymers obtained by radical chemistry. Chem Rev, 110, 1233–1277.

    Article  CAS  Google Scholar 

  19. Huang, J., & Meagher, M. M. (2001). (2001) Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes. J Membr Sci, 192, 231–242.

    Article  CAS  Google Scholar 

  20. Muthukumaran, S., Kentish, S. E., Ashokkumar, M., & Stevens, G. W. (2005). Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. J Membr Sci, 258, 106–114.

    Article  CAS  Google Scholar 

  21. Lv, J., & Xiao, G. (2010). Ultrasound assisted pervaporation separation of pyridine/water mixtures using poly(vinyl alcohol)/polyacrylonitrile blend membranes. Chem Eng Technol, 33, 2051–2058.

    Article  CAS  Google Scholar 

  22. McAuley, W. J., Oliveira, G., Mohammed, D., Beezer, A. E., Hadgraft, J., & Lane, M. E. (2010). Thermodynamic considerations of solvent/enhancer uptake into a model membrane. Int J Pharm, 396, 134–139.

    Article  CAS  Google Scholar 

  23. Qureshi, N., Meagher, M. M., & Hutkins, R. W. (1999). Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Membr Sci, 158, 115–125.

    Article  CAS  Google Scholar 

  24. Suslick, K. S. (1990). Sonochemistry. Science, 247, 1439–1445.

    Article  CAS  Google Scholar 

  25. Vines, R. E., Tamura, S. I., & Wolfe, J. P. (1995). Surface acoustic wave focusing and induced Rayleigh waves. Phys Rev Lett, 74, 2729–2732.

    Article  CAS  Google Scholar 

  26. Pain, H. J. (2005). The physics of vibrations and waves (6th ed.). Chichester: Wiley.

    Book  Google Scholar 

  27. Ghofar, A., & Kokugan, T. (2004). Pervaporation mechanism of dilute ethanol solution by hydrophobic porous membranes. Biochem Eng J, 18, 235–238.

    Article  CAS  Google Scholar 

  28. Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids (5th ed.). New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the 2013 Hannam University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menchavez, R.N., Ha, S.H. Ultrasound-Enhanced Recovery of Butanol/ABE by Pervaporation. Appl Biochem Biotechnol 171, 1159–1169 (2013). https://doi.org/10.1007/s12010-013-0196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0196-0

Keywords

Navigation