Skip to main content
Log in

Isolation of Biphenyl and Polychlorinated Biphenyl-Degrading Bacteria and Their Degradation Pathway

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Four strains of biphenyl-degrading bacteria were isolated from a sewage and identified from the Rhodococcus genus (SK-1, SK-3, and SK-4) and Aquamicrobium genus (SK-2) by 16S rRNA sequence. Among these strains, strain SK-2 was most suitable for biphenyl degradation. When 0.65, 1.3, 2.6, or 3.9 mM of biphenyl was used, the biphenyl was completely degraded within 24 and 96 h of culture, respectively. However, in the case of 6.5 and 9.75 mM of biphenyl, the biphenyl degradation yields were about 80 % and 46.7 % after 120 h of culture, respectively. The isolated strains could degrade a broad spectrum of aromatic compounds including high-chlorinated polychlorinated biphenyl (PCB) congeners in the presence of biphenyl. In addition, strain SK-2 could utilize PCB congeners containing one to six chlorine substituents such as 2,2′,4,4′,5,5′-hexachlorobiphenyl. The PCB utilization rate by the strain SK-2 was increased compared to that of other PCB congener-utilizing bacteria. The four isolates metabolized 4-chlorobiphenyl to 4-chlorobenzoic acid and 2-hydroxy-6-oxo-6-(4′-chlorophenyl)-hexa-2,4-dienoic acid. These results suggest the isolated strains might be good candidates for the bioremediation of PCB-contaminated soil, especially high-saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191.

    Article  CAS  Google Scholar 

  2. Takashi, H., Mitsuhiro, W., & Kenichiro, N. (2008). Concentration and characteristics of polychlorinated biphenyls in the sediments of sea and river in Nagasaki Prefecture. Japan Journal of Health Science, 54, 400–408.

    Article  Google Scholar 

  3. Hiroki, M. (2012). Current situation and issues of the industrial waste governance. Journal of Environmental Conservation Engineering, 41, 33–38.

    Google Scholar 

  4. Liu, W. X., Chen, J. L., Hu, J., Ling, X., & Tao, S. (2008). Multi-residues of organic pollutants in surface sediments from littoral areas of the Yellow Sea. Chinese Marine Pollution Bulletin, 56, 1091–1103.

    Article  CAS  Google Scholar 

  5. Furukawa, K., & Matsumura, F. (1976). Microbial metabolism of polychlorinated biphenyls-studies on relative degradability of polychlorinated biphenyl components by Alcaligenes sp. Journal of Agricultural and Food Chemistry, 24, 251–256.

    Article  CAS  Google Scholar 

  6. Unterman, R., Bedard, D. L., Brennan, M. J., Bopp, L. H., Mondello, F. J., Books, R. E., et al. (1988). Environmental biotechnology: reducing risks from environmental chemicals through biotechnology (pp. 253–269). New York: Plenum Press.

    Google Scholar 

  7. Hatamian-Zarmi, A., Shojaosadati, S. A., Vasheghani-Farahani, E., Hosseinkhani, S., & Emamzadeh, A. (2009). Extensive biodegradation of highly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils. International Biodeterioration & Biodegradation, 63, 788–794.

    Article  CAS  Google Scholar 

  8. Abdughafurovich, R. B., Andreevich, K. A., Lorenz Adrian, L., & Tashpulatovich, Y. K. (2010). Biodegradation of tritium labeled polychlorinated biphenyls (PCBs) by local salt tolerant mesophylic Bacillus Strains. Journal of Environmental Protection, 1, 420–425.

    Article  CAS  Google Scholar 

  9. Wittich, R. M., & Wolff, P. (2007). Growth of the genetically engineered strain Cupriavidus necator RW112 with chlorobenzoates and technical chlorobiphenyls. Microbiology, 153, 186–195.

    Article  CAS  Google Scholar 

  10. Kargi, F., & Dincer, A. R. (1999). Salt inhibition of nitrification and denitrification in saline wastewater. Environmental Technology, 20, 1147–1153.

    Article  Google Scholar 

  11. Abramowicz, D. A. (1990). Aerobic and anaerobic biodegradation of PCBs. Critical Reviews in Biotechnology, 10, 241–251.

    Article  CAS  Google Scholar 

  12. Jaysankar, D., Ramaiah, N., & Sarkar, A. (2006). Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World Journal of Microbiology and Biotechnology, 22, 1321–1327.

    Article  Google Scholar 

  13. Davidova, I., Hicks, M. S., Fedorak, P. M., & Suflita, J. M. (2001). The influence of nitrate on microbial processes in oil industry production waters. Journal of Industrial Microbiology and Biotechnology, 27, 80–86.

    Article  CAS  Google Scholar 

  14. Russo, R. C. (1985). Ammonia, nitrite and nitrate. In G. M. Rand & S. R. Petrocelli (Eds.), Fundamentals of aquatic toxicology (pp. 455–471). Washington DC, USA: Hemisphere Publishing Corporation.

    Google Scholar 

  15. Kim, P. J., Chang, K. W., & Min, K. H. (1995). Evaluation of the stability of compost made from food wastes by the fermenting tank. Journal of KOWREC, 3, 35–42.

    CAS  Google Scholar 

  16. Chang, Y. C., Ikeutsu, K., Toyama, T., Choi, D. B., & Kikuchi, S. (2011). Isolation and characterization of tetrachloroethylene and cis-1,2-dichloroethylene-dechlorinating propionibacteria. Journal of Industrial Microbiology and Biotechnology, 38, 1667–1677.

    Article  CAS  Google Scholar 

  17. Martínková, L., Uhnáková, B., Pátek, M., Nešvera, J., & Křen, V. (2009). Biodegradation potential of the genus Rhodococcus. Environment International, 35, 162–177.

    Article  Google Scholar 

  18. Yam, K. C., Van der Geize, R., & Eltis, L. D. (2010). Catabolism of aromatic compounds and steroids by Rhodococcus. Microbiology Monographs, 16, 133–169.

    Article  Google Scholar 

  19. Nozaki, M., Kagamitama, H., & Hayaishi, O. (1963). Metapyrocatechase. I. Purification, crystallization and some properties. Biochem Z journal, 38, 582–590.

    Google Scholar 

  20. Furukawa, K., Simon, J. R., & Chakrabarty, A. M. (1983). Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis. Journal of Bacteriology, 154, 1356–1362.

    CAS  Google Scholar 

  21. Furukawa, K., & Fujihara, H. (2008). Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. Journal of Bioscience and Bioengineering, 105, 433–449.

    Article  CAS  Google Scholar 

  22. Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., & Yano, K. (1995). A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology, 61, 3353–3358.

    CAS  Google Scholar 

  23. Adebusoye, S. A., Picardal, F. W., Ilori, M. O., & Amund, O. O. (2008). Evidence of aerobic utilization of di-ortho-substituted trichlorobiphenyls as growth substrates by Pseudomonas sp. SA-6 and Ralstonia sp. SA-4. Environmental Microbiology, 10, 1165–1174.

    Article  CAS  Google Scholar 

  24. Sakai, M., Ezaki, S., Suzuki, N., & Kurane, R. (2005). Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Applied and Environmental Microbiology, 68, 111–116.

    CAS  Google Scholar 

  25. Kim, S. G., & Picardal, F. (2001). Microbial growth on dichlorobiphenyls chlorinated on both ring as a sole carbon and energy source. Applied and Environmental Microbiology, 67, 1953–1955.

    Article  CAS  Google Scholar 

  26. Tu, C., Teng, Y., Luo, Y., Li, X., Sun, X., Li, Z., et al. (2011). Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. Journal of Hazardous Materials, 186, 1438–1444.

    Article  CAS  Google Scholar 

  27. Ahmad, D., Sylvestre, M., Sondossi, M., & Massé, R. (1991). Bioconversion of 2-hydroxy-6-oxo-6-(4’-chlorophenyl) hexa-2,4-dienoic acid, the meta-cleavage product of 4-chlorobiphenyl. Journal of General Microbiology, 137, 1375–1385.

    Article  CAS  Google Scholar 

  28. Massé, R., Messier, F., Ayotte, C., Lévesque, M. F., & Sylvestre, M. (1989). A comprehensive gas chromatographic/mass spectrometric analysis of 4-chlorobiphenyl bacterial degradation products. Biomedical & Environmental Mass Spectrometry, 18, 27–47.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Research for Promoting Technological Seeds Grant (A) No. 01–044, from the Japanese Science and Technology agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Cheol Chang or DuBok Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YC., Takada, K., Choi, D. et al. Isolation of Biphenyl and Polychlorinated Biphenyl-Degrading Bacteria and Their Degradation Pathway. Appl Biochem Biotechnol 170, 381–398 (2013). https://doi.org/10.1007/s12010-013-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0191-5

Keywords

Navigation