Skip to main content
Log in

RAPD Markers Associated with Salt Tolerance in Soybean Genotypes Under Salt Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to investigate the influence of genetic background on salt tolerance in soybean (Glycine max), ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) released in India, were selected and grown hydroponically. The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and random amplified polymorphic DNA (RAPD) analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes; however, the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20, while minimum reduction was shown by genotype Pusa-37, followed by BRAGG and PK-1042. Pusa-16, Pusa-22, Pusa-40, and DS-9712 were able to tolerate NaCl treatment up to the level of 75 Mm. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na+ and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted by plant physiological measures. Twenty RAPD primers revealed high polymorphism and genetic variation among ten soybean genotypes studied. The closer varieties in the cluster behaved similarly in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the ten genotypes in sub-cluster as expected from their physiological findings. Our study shows that RAPD technique is a sensitive, precise, and efficient tool for genomic analysis in soybean genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmad, C., Jaleelb, A., & Sharmaa, S. (2010). Antioxidant defense system, Lipid peroxidation, proline metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian Journal of Plant Physiology, 57, 509–517.

    Article  CAS  Google Scholar 

  2. Ahmad, P., & Jhon, R. (2005). Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Archives of Agronomy and Soil Science, 51, 665–672.

    Article  CAS  Google Scholar 

  3. Ali, G., Srivastava, P. S., & Iqbal, M. (1999). Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biologia Plantarum, 42, 89–95.

    Article  CAS  Google Scholar 

  4. Amirjani, M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 5, 350–360.

    Article  CAS  Google Scholar 

  5. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  6. Brown-Guedira, G. L., Thompson, J. A., Nelson, R. L., & Warburton, M. L. (2000). Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Science, 40, 815–823.

    Article  CAS  Google Scholar 

  7. Chen, T. H. H., & Murata, N. (2002). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 5, 250–257.

    Article  CAS  Google Scholar 

  8. Chen, Y., & Nelson, R. L. (2005). Relationship between origin and genetic diversity in Chinese soybean germplasm. Crop Science, 45, 1645–1652.

    Article  CAS  Google Scholar 

  9. Dogan, M., Tipirdamaz, R., & Demir, Y. (2010). Salt resistance of tomato species grown in sand culture. Plant, Soil and Environment, 56, 499–507.

    CAS  Google Scholar 

  10. Essa, T. A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188, 86–93.

    Article  CAS  Google Scholar 

  11. Flexas, J., Diaz Espejo, A., Galmes, J., Kaldenhoff, R., Medrano, H. O. L., & Ribas Carbo, M. (2007). Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell & Environment, 30, 1284–1298.

    Article  CAS  Google Scholar 

  12. Flower, T. J., Troke, P. F., & Yeo, A. R. (1977). The mechanisms of salt tolerance in halophytes. Annual Review of Plant Physiology, 28, 89–121.

    Article  Google Scholar 

  13. Greenway, H., & Munns. (1980). Mechanisms of salt tolerance in non halophytes. Annual Review of Plant Physiology, 31, 149–190.

    Article  CAS  Google Scholar 

  14. Gzik, A. (1996). Accumulation of proline and pattern of amino acids in sugar beet plants in response to osmotic, water and salt stress. Environmental and Experimental Botany, 36, 29–38.

    Article  CAS  Google Scholar 

  15. Hagemeyer J (1997) Salt. In: M. N. V. Prasad (Ed.) Plant ecophysiology. New York: Wiley

  16. Hakeem, K. R., Chandna, R., Ahmad, P., Ozturk, M., & Iqbal, M. (2012). Relevance of proteomic investigations in plant stress physiology. OMICS: A Journal of Integrative Biology, 16(11), 621–635.

    Article  CAS  Google Scholar 

  17. Hakeem, K. R., Khan, F., Chandna, R., Siddiqui, T. O., & Iqbal, M. (2012). Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt tolerant genotype. Applied Biochemistry and Biotechnology, 168, 2309–2329.

    Article  CAS  Google Scholar 

  18. Hittalmani, S., Parco, A., Mew, T. V., & Zeigler, R. S. (2000). Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theoretical and Applied Genetics, 100, 1121–1128.

    Article  CAS  Google Scholar 

  19. Hoagland, D. R., & Arnon, D. S. (1950). The water culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1–32.

    Google Scholar 

  20. Winicov, I. (1998). New molecular approaches to improving salt tolerance in crop plants. Annals of Botany, 82, 703–710.

    Article  CAS  Google Scholar 

  21. Jaccard, P. (1908). Nauvelles recherches sur la distributionflorale. Bulletin de la Societe Vaudoise des Sciences Naturelles, 44, 223–270.

    Google Scholar 

  22. Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice-Hall.

    Google Scholar 

  23. Jain, M., Mathur, G., Koul, S., & Sarin, N. B. (2001). Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 20, 463–468.

    Article  CAS  Google Scholar 

  24. Katerji, N., van Hoorn, J. W., Hamdy, A., Mastrorilli, M., & Karam, F. (1998). Salinity and drought, a comparison of their effects on the relationship between yield and evapotranspiration. Agricultural Water Management, 36, 45–54.

    Article  Google Scholar 

  25. Kokubun, M., & Shimada, S. (1994). Diurnal change of photosynthesis and its relation to yield in soybean cultivars. Japanese Journal of Crop Science, 63, 305–312.

    Article  CAS  Google Scholar 

  26. Lauchli, A. (1984). Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In R. C. Staples & G. H. Toenniessen (Eds.), Salinity tolerance in plants strategies for crop improvement (pp. 171–188). New York: Wiley.

    Google Scholar 

  27. Li, Z., & Nelson, R. L. (2001). Genetic diversity among soybean accessions from three countries measured by RAPD. Crop Science, 41, 1337–1347.

    Article  CAS  Google Scholar 

  28. Maeda, Y., & Nakazawa, R. (2008). Effects of the timing of calcium application on the alleviation of salt stress in the maize, tall fescue, and reed canarygrass seedlings. Biologia Plantarum, 52, 153–156.

    Article  CAS  Google Scholar 

  29. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.

    Article  CAS  Google Scholar 

  30. Nybom, H. I. V., & Bartish. (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology Evolution Systematics, 3, 93–114.

    Article  Google Scholar 

  31. Petrusa, L. M., & Winicov I. (1997). Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiology Biochemistry, 35, 303–310.

    Google Scholar 

  32. Prevost, A., & Wilkinson, M. J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98, 107–112.

    Article  CAS  Google Scholar 

  33. Qin, J., Dong, W. Y., He, K. N., Yu, Y., Tan, G. D., Han, L., et al. (2010). NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea (Pursh) Nutt. seedlings. Plant, Soil and Environment, 56, 325–332.

    CAS  Google Scholar 

  34. Rohlf, F. J. (1998). NTSYS-PC numerical taxonomy and multivariate analysis system, version. Setauket: Exeter Software.

    Google Scholar 

  35. Saghai-Maroof, M. A., Biyaschev, R. M., Yang, G. P., Zhang, Q., & Allard, R. W. (1984). Extaordinary polymorphism microsatellite DNA in barley: species diversity, chromosomal location and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 91, 5466–5470.

    Article  Google Scholar 

  36. Saraj, R., Vasquez-Diaz, H., & Drevon, J. J. (1998). Effects of salt stress on nitrogen fixation, oxygen diffusion, and ion distribution in soybean, common bean, and alfalfa. Journal of Plant Nutrition, 21, 475–488.

    Article  Google Scholar 

  37. Singh, R. K., Kumar, A., Billore, M., Rani, A., Husain, S. M., & Chauhan, G. S. (2006). Analysis of soybean germplasm using randomly amplified polymorphic DNA markers. The Nucleus, 49, 165–172.

    Google Scholar 

  38. Singleton, P. W., & Bohlool, B. B. (1984). Effect of salinity on nodule formation by soybean. Plant Physiology, 74, 72–76.

    Article  CAS  Google Scholar 

  39. Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258–260.

    Article  CAS  Google Scholar 

  40. Sreenivasulu, N., Grimm, B., & Wobus, U. (2000). Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109, 435–443.

    Article  CAS  Google Scholar 

  41. Takeuchi, Y., Hayasaka, H., Chiba, B., Tanaka, I., Shimano, T., Yamagishi, M., et al. (2001). Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breeding Science, 51, 191–197.

    Article  CAS  Google Scholar 

  42. Thompson, J. A., Nelson, R. L., & Vodkin, L. D. (1998). Identification of diverse soybean germplasm using RAPD markers. Crop Science, 38, 1348–1355.

    Article  Google Scholar 

  43. Türkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67, 2–9.

    Article  Google Scholar 

  44. Ude, G. N., Kenworthy, W. J., Costa, J. M., Cregan, P. B., & Alvernaz, J. (2003). Genetic diversity of soybean cultivars from China, Japan, North America and North American ancestral lines determined by Amplified fragment length polymorphism. Crop Science, 43, 1858–1867.

    Article  CAS  Google Scholar 

  45. Wang, D., & Shannon, M. C. (1999). Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant and Soil, 214, 117–124.

    Article  CAS  Google Scholar 

  46. Weir, B. (1990). Genetic data analysis: methods for desecrate population genetic data. Sunderland: Sinauer Associates.

    Google Scholar 

  47. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tigey, S. V. (1990). DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 22, 6531–6535.

    Article  Google Scholar 

  48. Wu, Q. S., Zou, Y. N., Liu, W., Ye, X. F., Zai, H. F., & Zhao, L. J. (2010). Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant, Soil and Environment, 56, 470–475.

    CAS  Google Scholar 

  49. Yang, C. W., Shi, D. C., & Wang, D. L. (2008). Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of analkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 56, 179–190.

    Article  CAS  Google Scholar 

  50. Yeo, A. R., & Flowers, T. J. (1983). Varietal differences in the toxicity of sodium ions in rice leaves. Physiologia Plantarum, 59, 189–195.

    Article  CAS  Google Scholar 

  51. Yildirim, E., Karlidag, H., & Turan, M. (2009). Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant, Soil and Environment, 55, 213–221.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Rehman Hakeem.

Additional information

Faheema Khan and Khalid Rehman Hakeem contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, F., Hakeem, K.R., Siddiqi, T.O. et al. RAPD Markers Associated with Salt Tolerance in Soybean Genotypes Under Salt Stress. Appl Biochem Biotechnol 170, 257–272 (2013). https://doi.org/10.1007/s12010-013-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0182-6

Keywords

Navigation