Skip to main content
Log in

Thermostable and Alkalistable Endoxylanase of the Extremely Thermophilic Bacterium Geobacillus thermodenitrificans TSAA1: Cloning, Expression, Characteristics and Its Applicability in Generating Xylooligosaccharides and Fermentable Sugars

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylanase encoding gene (1,224 bp) from Geobacillus thermodenitrificans was cloned in pET28a (+) vector and successfully expressed in Escherichia coli BL21 (DE3). The deduced amino acid sequence analysis revealed homology with that of glycosyl hydrolase (GH) 10 family with a high molecular mass (50 kDa). The purified recombinant xylanase is optimally active at pH 9.0 and 70 °C with T 1/2 of 10 min at 80 °C, and retains greater than 85 % activity after exposure to 70 °C for 180 min. The enzyme liberates xylose as well as xylooligosaccharides from birchwood xylan and agro-residues, and therefore, this is an endoxylanase. The xylan hydrolytic products (xylooligosaccharides, xylose, and xylobiose) find application as prebiotics and in the production of bioethanol. The xylanase being thermostable and alkalistable, it has released chromophores and phenolics from the residual lignin of pulps, suggesting its utility in mitigating chlorine requirement in pulp bleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  2. Bazzicalupo, M., & Fani, R. (1995). In: Methods in molecular biology, species diagnostic protocols: PCR and other nucleic acids methods. (Eds. Clapp, J.P.), pp. 155–77. Totowa: Humana Press.

  3. Verma, D., & Satyanarayana, T. (2012). Bioresource Technology, 107, 333–338.

    Article  CAS  Google Scholar 

  4. Archana, A., & Satyanarayana, T. (1997). Enzyme and Microbial Technology, 21, 12–17.

    Article  CAS  Google Scholar 

  5. Miller, G. L. (1959). Anaytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  6. Patel, R. N., Grabski, A. C., & Jeffries, T. W. (1993). Applied Microbiology and Biotechnology, 39, 405–412.

    Article  CAS  Google Scholar 

  7. Lambert, C., Leonard, N., De Bolle, X., & Depiereux, E. (2002). Bioinformatics, 18, 1250–1256.

    Article  CAS  Google Scholar 

  8. Gerasimova, J., & Kuisiene, N. (2012). Microbiology, 81, 418–424.

    Article  CAS  Google Scholar 

  9. Saksono, B., & Sukmarini, L. (2010). HAYATI Journal of Biosciences, 17, 189–197.

    Article  Google Scholar 

  10. Canakci, S., Cevher, Z., Inan, K., Tokgoz, M., Bahar, F., Kacagan, M., et al. (2012). World Journal of Microbiology and Biotechnology, 28, 1981–1988.

    Article  CAS  Google Scholar 

  11. Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2007). Extremophiles, 11, 169–177.

    Article  CAS  Google Scholar 

  12. Guo, B., Chen, X. L., Sun, C. Y., Zhou, B. C., & Zhang, Y. Z. (2009). Applied Microbiology and Biotechnology, 84, 1107–1115.

    Article  CAS  Google Scholar 

  13. Sinnot, M. L. (1990). Chemical Reviews, 90, 1171–1202.

    Article  Google Scholar 

  14. McCarter, J. D., & Withers, S. G. (1994). Current Opinion in Structure Biology, 4, 885–892.

    Article  CAS  Google Scholar 

  15. Shi, P., Tian, J., Yuan, T., Liu, X., Huang, H., et al. (2011). Applied and Environmental Microbiology, 76, 3620–3624.

    Article  Google Scholar 

  16. Ko, E. P., Akatsuka, H., Moriyama, H., Shinmyo, A., Hata, Y., Kastube, Y., et al. (1992). Journal of Biochemistry, 288, 117–121.

    CAS  Google Scholar 

  17. Coughlan, M., & Visser, J. (1992). In J. Visser, G. Beldman, M. A. K. Someren, & A. G. J. Voragen (Eds.), Xylans and xylanases (pp. 111–140). Amsterdam: Elsevier.

    Google Scholar 

  18. Paes, G., Berrin, J. G., & Beaugrand, J. (2012). Advances in Biotechnology, 30, 564–592.

    Article  CAS  Google Scholar 

  19. Jalal, A., Rashid, N., Rasool, N., & Akhtar, M. (2009). Journal of Bioscience and Bioengineering, 107, 360–365.

    Article  CAS  Google Scholar 

  20. Hyeong, H. L., Lim, P. O., & Lee, Y. E. (2007). Journal of Microbiology and Biotechnology, 17, 29–36.

    Google Scholar 

  21. Son-Ng, I., Li, C. W., Yeh, Y., Chen, P. T., Chir, J. L., Ma, C. H., et al. (2009). Extremophiles, 13, 425–435.

    Article  Google Scholar 

  22. Chang, W. S., Tsai, C. L., & Tseng, M. J. (2004). Biochemical and Biophysical Research Communications, 319, 1017–1025.

    Article  CAS  Google Scholar 

  23. Cheng, Y. F., Yang, C. H., & Liu, W. H. (2005). Enzyme and Microbial Technology, 37, 541–546.

    Article  CAS  Google Scholar 

  24. Gupta, N., Vohra, R. M., & Hoondal, G. S. (1992). Biotechnology Letters, 14, 1045–1046.

    Article  CAS  Google Scholar 

  25. Bajaj, B. K., Razdan, K., & Sharma, A. (2010). Indian Journal of Chemical Technology, 17, 375–380.

    CAS  Google Scholar 

  26. Zhang, G., Mao, L., Zhao, Y., Xue, Y., & Ma, Y. (2010). Biotechnology Letters, 32, 1915–1920.

    Article  CAS  Google Scholar 

  27. Khasin, A., Alchanati, I., & Shoham, Y. (1993). Applied and Environmental Microbiology, 59, 1725–1730.

    CAS  Google Scholar 

  28. Shrinivas, D., Savitha, G., & Naik, G. R. (2010). Applied Biochemistry and Biotechnology, 162, 2049–2057.

    Article  CAS  Google Scholar 

  29. Viikari, L., Ranua, M., Kantelinen, A., Sunduist, J., & Linko, M. (1986). In: Proc 3rd Int Conf Biotechnology in the Pulp and Paper Industry, STFI, Stockholm, Sweden, pp.67–9.

  30. Kulkarni, N., & Rao, N. (1996). Journal of Biotechnology, 51, 167–173.

    Article  CAS  Google Scholar 

  31. Zhang, G. M., Huang, J., Huang, G. R., Ma, L. X., & Zhang, X. E. (2007). Applied Microbiology and Biotechnology, 74, 339–346.

    Article  CAS  Google Scholar 

  32. Liu, W., Shi, P., Chen, Q., Yang, P., Wang, G., Wang, Y., et al. (2010). Applied Biochemistry and Biotechnology, 162, 1–12.

    Article  CAS  Google Scholar 

  33. Yin, L., Lin, H., Chiang, Y., & Jiang, S. (2010). Journal of Agriculture & Food Chemistry, 58, 557–562.

    Article  CAS  Google Scholar 

  34. Gupta, S., Bhushan, B., & Hoondal, G. S. (2000). Journal of Applied Microbiology, 88, 325–334.

    Article  CAS  Google Scholar 

  35. Kamble, R. D., & Jadhav, A. R. (2012). ISRN Biotechnology, 2013, 1–5.

    Article  Google Scholar 

  36. Salama, M. A., Ismail, K. M. I., Amany, H. A., Abo, E.-L., & Genweely, N. S. I. (2008). International Journal of Botany, 4, 41–48.

    Article  CAS  Google Scholar 

  37. Lu, F., Lu, M., Lu, Z., Bie, X., Zhao, H., & Wang, Y. (2008). Bioresource Technology, 99, 5938–5941.

    Article  CAS  Google Scholar 

  38. Cardoso, O. A. V., & Filho, E. X. F. (2003). FEMS Microbiology Letters, 223, 309–314.

    Article  CAS  Google Scholar 

  39. Wu, S., Liu, B., & Zhang, X. (2006). Applied Microbiology and Biotechnology, 72, 1210–1216.

    Article  CAS  Google Scholar 

  40. Do, T. T., & Quyen, D. T. (2010). Middle East Journal of Scientific Research, 6, 392–397.

    CAS  Google Scholar 

  41. Torronen, A., Mach, R. L., Messner, R., Gonzalez, R., Kakkinen, N., Harkki, A., et al. (1992). Biotechnology (NY), 10, 1461–1465.

    Article  CAS  Google Scholar 

  42. Khandeparkar, R. D. S., & Bhosle, N. B. (2006). Enzyme and Microbial Technology, 4, 732–742.

    Article  Google Scholar 

  43. Gruppen, H., Hamer, R. J., & Voragen, A. G. J. (1992). Journal of Cereal Science, 16, 53–67.

    Article  CAS  Google Scholar 

  44. Kormelink, F. J. M., & Voragen, A. G. J. (1993). Applied Microbiology and Biotechnology, 38, 688–695.

    Article  CAS  Google Scholar 

  45. Jiang, Z. Q., Deng, W., Zhu, Y. P., Li, L. T., Sheng, Y. J., & Hayashi, K. (2004). Journal of Molecular Catalysis B Enzymatic, 27, 207–213.

    Article  CAS  Google Scholar 

  46. Ratanakhanokchai, K., Kyu, K. L., & Tanticharoen, M. (1999). Applied and Environmental Microbiology, 65, 694–697.

    CAS  Google Scholar 

  47. Damiano, V. B., Bocchini, D. A., Gomes, E., & Da Silva, R. (2003). World Journal of Microbiology and Biotechnology, 19, 139–144.

    Article  CAS  Google Scholar 

  48. Choudhury, B., Sunita, C., Singh, S. N., & Ghosh, P. (2006). World Journal of Microbiology and Biotechnology, 22, 283–288.

    Article  CAS  Google Scholar 

  49. Kaur, A., Mahajan, R., Singh, A., Garg, G., & Sharma, J. (2010). Bioresource Technology, 101, 9150–9155.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ministry of Environment and Forests, Govt. of India, New Delhi for partial financial assistance while carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Nucleotide and deduced amino acid sequences of the G. thermodenitrificans xylanase gene. The underlined regions I (I V A E N V M K), II (R F H T L V W H), III (D V V N E), IV (L Y I N D Y N), V (I G H Q S H I), VI (I T E L D V), VII (T F W G I A D N H T W), and VIII (D Y I K V A F Q T A) denote highly conserved GH10 xylanases. Glu187, Asp230, and Glu293 are crucial catalytic residues. (DOC 40 kb)

Supplementary Fig. 2

Secondary structure of rXyl-gtd was proposed using ESPript 2.2 software. The structure is based on the available template of xylanase from 1HIZ chain A of G. stearothermophilus. Symbols α, β, and TT denote the helix, sheets, and turns, respectively. (DOC 237 kb)

Supplementary Fig.3

Electrophoretic analysis of the rXyl-gtd using 15 % SDS-PAGE. a Purified rXyl-gtd of 50 kDa; M, standard protein markers; lanes 1 and 2 show eluted proteins with 200 and 250 mM imidazole; b zymogram analysis of purified rXyl-gtd using Congo red. (DOC 644 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, D., Anand, A. & Satyanarayana, T. Thermostable and Alkalistable Endoxylanase of the Extremely Thermophilic Bacterium Geobacillus thermodenitrificans TSAA1: Cloning, Expression, Characteristics and Its Applicability in Generating Xylooligosaccharides and Fermentable Sugars. Appl Biochem Biotechnol 170, 119–130 (2013). https://doi.org/10.1007/s12010-013-0174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0174-6

Keywords

Navigation