Skip to main content

Advertisement

Log in

Anaerobic Treatment of Industrial Biodiesel Wastewater by an ASBR for Methane Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A mechanically stirred anaerobic sequencing batch reactor (5 L, 30 °C) containing granular biomass was used to treat the effluent of an industrial biodiesel production process with the purpose to produce methane. Process stability and efficiency were analyzed as a function of applied volumetric organic load (AVOL of 1,000 to 3,000 mgCOD/L), reactor feed time, and cycle length (8-h cycles with 10-min or 4-h feeding and 4-h cycles with 10-min or 2-h feeding). Batch operations (B) with 1,000 to 3,000 mgCOD/L involved 10-min feeding/discharge: (1) 1.0-L influent with 4-h cycle and (2) 2.0-L influent with 8-h cycle. Fed-batch operations (FB) with 1,000 to 3,000 mgCOD/L involved 10-min discharge and the following feeding: (1) 1.0-L influent in 2 h with 4-h cycle and (2) 2.0-L influent in 4 h with 8-h cycle. At 1,000 mgCOD/L (AVOL of 18 to 1.29 gCOD/L day), kinetic parameter values were 1.03 and 0.92 h-1 at conditions B-1000-4 h and FB-1000-8/4 h, respectively. At both conditions, removal efficiency was 88 %, and cycle length could be reduced to 3 h (B-1000-4 h) and 5 h (FB-1000-8/4 h). At 2,000 mgCOD/L (AVOL of 2.38 to 2.52 gCOD/L day), kinetic parameter values were 1.08 and 0.99 h-1 at conditions B-2000-4/2 h and FB-2000-8/4 h, respectively, and removal efficiencies were 83 and 81 %. Cycle length could be reduced to 3 h (B-2000-4/2 h) and 6 h (FB-2000-8/4 h). At 3,000 mgCOD/L (AVOL of 3.71 to 3.89 gCOD/L day), conditions allowing stable operation were B-3000-4 h, FB-3000-8/4 h, and FB-3000-4/2 h. Stability could not be obtained at condition B-3000-8 h, and the best results were obtained at condition FB-3000-8/4 h. Specific methane production ranged from 41.1 to 93.7 NmLCH4/gCOD, demonstrating reactor application potential and operation flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor—model development and experimental validation. Water Environmental Research, 71, 1320–1332.

    Article  CAS  Google Scholar 

  2. Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Canto, C. S. A., & Zaiat, M. (2011). Effect of organic load on the performance and methane production of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 165, 347–368.

    Article  CAS  Google Scholar 

  3. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol containing wastes discharges after biodiesel manufacturing process. Journal of Bioscience and Bioengineering, 100, 260–265.

    Article  CAS  Google Scholar 

  4. Lovato, G., Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2012). Effect of feed strategy on methane production and performance of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 166, 2007–2029.

    Article  CAS  Google Scholar 

  5. Nishio, N., & Nakashimada, Y. (2007). Recent development of digestion process for energy recovery from wastes. Journal of Bioscience and Bioengineering, 103, 105–112.

    Article  CAS  Google Scholar 

  6. Rodrigues, J. A. D., Pinto, A. G., Ratusznei, S. M., Zaiat, M., & Gedraite, R. (2004). Enhancement of the performance of an anaerobic sequencing batch reactor treating low strength wastewater through implementation of a variable stirring rate program. Brazilian Journal of Chemical Engineering, 21, 423–434.

    Article  CAS  Google Scholar 

  7. Sabourin-Provost, G., & Hallenbeck, P. C. (2009). High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresource Technology, 100, 3513–3517.

    Article  CAS  Google Scholar 

  8. Selma, V. C., Cotrim, L. H. B., Rodrigues, J. A. D., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2010). ASBR applied to the treatment of biodiesel production effluent: effect of organic load and feed time on performance and methane production. Applied Biochemistry and Biotechnology, 162, 2365–2380.

    Article  CAS  Google Scholar 

  9. Standard Methods for the Examination of Water and Wastewater. (1995). APHA, AWWA, WPCF (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  10. Suehara, K., Kawamoto, Y., Fujii, E., Kohda, J., Nakano, Y., & Yano, T. (2005). Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification. Journal of Bioscience and Bioengineering, 100, 437–442.

    Article  CAS  Google Scholar 

  11. Shao, X., Peng, D., Teng, Z., & Ju, X. (2008). Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresource Technology, 99, 3182–3186.

    Article  CAS  Google Scholar 

  12. Yang, Y., Tsukahara, K., & Sawayama, S. (2008). Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. Process Biochemistry, 43, 362–367.

    Article  CAS  Google Scholar 

  13. Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, 18, 213–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo–FAPESP (São Paulo, Brazil), process numbers 09/15.984-0 and 10/05.569-3 (R.C. Silva). The authors gratefully acknowledge Dr. Baltus C. Bonse for the revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. D. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, R.C., Rodrigues, J.A.D., Ratusznei, S.M. et al. Anaerobic Treatment of Industrial Biodiesel Wastewater by an ASBR for Methane Production. Appl Biochem Biotechnol 170, 105–118 (2013). https://doi.org/10.1007/s12010-013-0171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0171-9

Keywords

Navigation