Skip to main content

Advertisement

Log in

Chemical Modification of Saccharomycopsis fibuligera R64 α-Amylase to Improve its Stability Against Thermal, Chelator, and Proteolytic Inactivation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

α-Amylase catalyzes hydrolysis of starch to oligosaccharides, which are further degraded to simple sugars. The enzyme has been widely used in food and textile industries and recently, in generation of renewable energy. An α-amylase from yeast Saccharomycopsis fibuligera R64 (Sfamy) is active at 50 °C and capable of degrading raw starch, making it attractive for the aforementioned applications. To improve its characteristics as well as to provide information for structural study ab initio, the enzyme was chemically modified by acid anhydrides (nonpolar groups), glyoxylic acid (GA) (polar group), dimethyl adipimidate (DMA) (cross-linking), and polyethylene glycol (PEG) (hydrophilization). Introduction of nonpolar groups increased enzyme stability up to 18 times, while modification by a cross-linking agent resulted in protection of the calcium ion, which is essential for enzyme activity and integrity. The hydrophilization with PEG resulted in protection against tryptic digestion. The chemical modification of Sfamy by various modifiers has thereby resulted in improvement of its characteristics and provided systematic information beneficial for structural study of the enzyme. An in silico structural study of the enzyme improved the interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aotamy:

Aspergillus oryzae taka-amylase

CC:

Cyanuric chloride

DEAE:

Diethylaminoethyl

DMA:

Dimethyl adipimidate

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetate

HIC:

Hydrophobic interaction chromatography

PAGE:

Polyacrylamide gel electrophoresis

PEG:

Polyethylene glycol

PEGylation:

Modification with polyethylene glycol

SDS:

Sodium dodecyl sulfate

Sfamy:

Saccharomycopsis fibuligera α-amylase

TIM:

Triosephosphate isomerase

TNBS:

Trinitrobenzene sulfonate

TPCK:

L-1-Tosylamido-2-phenylethyl chloromethyl ketone

References

  1. Janecek, S., & Balaz, S. (1992). FEBS Letters, 304, 1–3.

    Article  CAS  Google Scholar 

  2. van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Journal of Biotechnology, 94, 137–155.

    Article  Google Scholar 

  3. Nielsen, J. E., & Borchert, T. V. (2000). Biochimica et Biophysica Acta, 1543, 253–274.

    Article  CAS  Google Scholar 

  4. Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., et al. (2004). Applied and Environmental Microbiology, 70, 5037–5040.

    Article  CAS  Google Scholar 

  5. McCue, P. P., & Shetty, K. (2004). Process Biochemistry, 39, 1785–1791.

    Article  CAS  Google Scholar 

  6. Sidhu, G. S., Sharma, P., Chakrabarti, T., & Gupta, J. K. (1997). Enzyme and Microbial Technology, 21, 525–530.

    Article  CAS  Google Scholar 

  7. Hasan, K., Ismaya, W. T., Kardi, I., Andiyana, Y., Kusumawidjaya, S., Ishmayana, S., et al. (2008). Biologia, 63, 1044–1050.

    Article  CAS  Google Scholar 

  8. Ulmer, K. M. (1983). Science, 219, 666–671.

    Article  CAS  Google Scholar 

  9. Janecek, S. (1993). Process Biochemistry, 28, 435–445.

    Article  CAS  Google Scholar 

  10. Mozhaev, V. V., Siksnis, V. A., Melik-Nubarov, N. S., Galkantaite, N. Z., Denis, G. J., Butkus, E. P., et al. (1988). European Journal of Biochemistry, 173, 147–154.

    Article  CAS  Google Scholar 

  11. Mozhaev, V. V., Melik-Nubarov, N. S., Siksnis, V. A., & Martinek, K. (1990). Biocatalyst, 3, 189–196.

    Article  CAS  Google Scholar 

  12. Brzozowski, A. M., & Davies, G. J. (1997). Biochemistry, 36, 10837–10845.

    Article  CAS  Google Scholar 

  13. Itoh, T., Yamashita, I., & Fukui, S. (1987). FEBS Letters, 29, 339–342.

    Article  Google Scholar 

  14. Matsui, I., Yoneda, S., Ishikawa, K., Miyairi, S., Fukui, S., Umeyama, H., et al. (1994). Biochemistry, 33, 189–196.

    Google Scholar 

  15. Janecek, S., Svensson, B., & Henrissat, B. (1997). Journal of Molecular Evolution, 45, 322–331.

    Article  CAS  Google Scholar 

  16. Janecek, S., & Sevcik, J. (1999). FEBS Letters, 456, 119–125.

    Article  CAS  Google Scholar 

  17. Svensson, B. (1994). Plant Molecular Biology, 25, 141–157.

    Article  CAS  Google Scholar 

  18. Franco, T. T., Andrews, A. T., & Ansejo, J. A. (1996). Biotechnology and Bioengineering, 49, 290–299.

    Article  CAS  Google Scholar 

  19. Franco, T. T., Andrews, A. T., & Ansejo, J. A. (1996). Biotechnology and Bioengineering, 49, 300–308.

    Article  CAS  Google Scholar 

  20. Alcalde, M., Plou, F. J., Anderssen, C., Martin, M. T., Pederssen, S., & Ballesteros, A. (1999). FEBS Letters, 445, 333–337.

    Article  CAS  Google Scholar 

  21. Melik-Nubarov, N. S., Mozhaev, V. V., Siksnis, S., & Martinek, K. (1987). Biotechnology Letters, 9, 725–730.

    Article  CAS  Google Scholar 

  22. Kazan, D., Ertan, H., & Erarslan, A. (1996). Process Biochemistry, 31, 135–140.

    Article  CAS  Google Scholar 

  23. Takashi, K., Ajima, A., Takayuki, Y., Okada, M., Matsushima, A., Tamaura, Y., et al. (1985). Journal of Organic Chemistry, 50, 3411–3415.

    Article  Google Scholar 

  24. Fuwa, H. (1954). J. Biochem (Tokyo), 41, 583–603.

    CAS  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  26. Fields, R. (1971). Biochemical Journal, 124, 581–590.

    CAS  Google Scholar 

  27. Sadana, A., & Henley, J. P. (1986). Biotechnology and Bioengineering, 28, 256–268.

    Article  CAS  Google Scholar 

  28. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Bioinformatics, 23, 2947–2948.

    Article  CAS  Google Scholar 

  29. Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., et al. (2010). Nucleic Acid Research, 38, W695–W699.

  30. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project Number 4. (1994). Acta Crystallographica, D50, 760–763.

  32. Chen, V. B., Arendall, W. B., III, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., et al. (2010). Acta Crystallographica, D66, 12–21.

    CAS  Google Scholar 

  33. Emsley, P., Lohkamp, B., Scott, W., & Cowtan, K. (2010). Acta Crystallographica, D66, 486–501.

    CAS  Google Scholar 

  34. DeLano, W. L. (2008) The PyMOL molecular graphics system, Delano Scientific LLC, Palo Alto, CA - USA.

  35. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). Nucleic Acid Research 32, W665–W667.

  36. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Proceedings of the National Academy of Sciences, 98, 10037–10041.

    Google Scholar 

  37. Tsai, C. S., Tsai, Y. H., Lauzon, G., & Cheng, S. T. (1974). Biochemistry, 13, 440–443.

    Article  CAS  Google Scholar 

  38. Hirs, C. H. W., & Kycia, J. H. (1965). Archives of Biochemistry and Biophysics, 111, 223–235.

    Article  CAS  Google Scholar 

  39. Paetzel, M., Strynadka, N. C. J., Tschantz, W. R., Casareno, R., Bullinger, P. R., & Dalbey, R. E. (1997). Journal of Biological Chemistry, 272, 9994–10003.

    Article  CAS  Google Scholar 

  40. Siddiqui, K. S., Poljak, A., Guilhaus, M., Francisci, D. D., Curmi, P. M. G., Feller, G., et al. (2006). Proteins, 64, 486–501.

    Article  CAS  Google Scholar 

  41. Baines, N. J., Baird, J. B., & Elmore, D. T. (1964). Biochemical Journal, 90, 470–476.

    CAS  Google Scholar 

  42. Seidl, D. S., & Liener, I. E. (1971). Biochemical and Biophysical Research Communications, 42, 1101–1107.

    Article  CAS  Google Scholar 

  43. Nureddin, A., & Inagami, T. (1975). Biochemical Journal, 147, 71–81.

    CAS  Google Scholar 

  44. Vieille, C., & Zeikus, J. G. (1996). Tibtech, 14, 183–189.

    Article  CAS  Google Scholar 

  45. Fu, M.-X., Requena, J. S. R., Jenkins, A. J., Lyons, T. J., Baynes, J. W., & Thorpe, S. R. (1996). Journal of Biological Chemistry, 271, 9982–9986.

    Article  CAS  Google Scholar 

  46. Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., et al. (1999). Journal of Biological Chemistry, 274, 31740–31749.

    Article  CAS  Google Scholar 

  47. Buetler, T. M., Leclerc, E., Baumeyer, A., Latado, H., Newell, J., Adolfsson, O., et al. (2008). Molecular Nutrition & Food Research, 52, 370–378.

    Article  CAS  Google Scholar 

  48. Sinz, A. (2006). Mass Spectrometry Reviews, 25, 663–682.

    Article  CAS  Google Scholar 

  49. Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T., & Davis, F. F. (1977). Journal of Biological Chemistry, 252, 3582–3586.

    CAS  Google Scholar 

  50. Matsushima, A., Nishimura, H., Ashihara, Y., Yokota, Y., & Inada, Y. (1980). Chemistry Letters, 773–776.

  51. McGoff, P., Baziotis, A. C., & Maskiewicz, R. (1988). Chemical and Pharmaceutical Bulletin, 36, 3079–3091.

    Article  CAS  Google Scholar 

  52. Leiros, H.-K. S., Brandsdal, B. O., Andersen, O. A., Os, V., Leiros, I., Helland, R., et al. (2004). Protein Science, 13, 1056–1070.

  53. Sada, E., Katoh, S., Yamanaka, K., & Itakura, Y. (1991). Journal of Fermentation and Bioengineering, 71, 137–139.

    Article  CAS  Google Scholar 

  54. Francis, G. E., Delgado, C., Fisher, D., Malik, F., & Agrawal, A. K. (1996). Journal of Drug Targeting, 3, 321–340.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financed by the Indonesian Directorate General of Higher Education (DIKTI), Ministry of National Education, Republic of Indonesia (competitive grant batch IX/1-3 entitled Protein engineering of α-amylase from Saccharomycopsis fibuligera R64, for WTI). We thank Prof. J.J. Beintema for his valuable advice and discussion and Dr. H.J. Doddema for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wangsa Tirta Ismaya or Soetijoso Soemitro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismaya, W.T., Hasan, K., Kardi, I. et al. Chemical Modification of Saccharomycopsis fibuligera R64 α-Amylase to Improve its Stability Against Thermal, Chelator, and Proteolytic Inactivation. Appl Biochem Biotechnol 170, 44–57 (2013). https://doi.org/10.1007/s12010-013-0164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0164-8

Keywords

Navigation