Skip to main content
Log in

Silaffin Peptides as a Novel Signal Enhancer for Gravimetric Biosensors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Application of biomimetic silica formation to gravimetric biosensors has been conducted for the first time. As a model system, silaffin peptides fused with green fluorescent protein (GFP) were immobilized on a gold quartz crystal resonator for quartz crystal microbalances using a self-assembled monolayer. When a solution of silicic acid was supplied, silica particles were successfully deposited on the Au surface, resulting in a significant change in resonance frequency (i.e., signal enhancement) with the silaffin–GFP. However, frequency was not altered when bare GFP was used as a control. The novel peptide enhancer is advantageous because it can be readily and quantitatively conjugated with sensing proteins using recombinant DNA technology. As a proof of concept, this study shows that the silaffin domains can be employed as a novel and efficient biomolecular signal enhancer for gravimetric biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Kröger, N., Deutzmann, R., & Sumper, M. (1999). Science, 286, 1129–1132.

    Article  Google Scholar 

  2. Foo, C. W. P., Huang, J., & Kaplan, D. L. (2004). Trends in Biotechnology, 22, 577–585.

    Article  CAS  Google Scholar 

  3. Knecht, M. R., & Wright, D. W. (2003). Chemical Communications, 3038–3039.

  4. Luckarift, H. R., Spain, J. C., Naik, R. R., & Stone, M. O. (2004). Nature Biotechnology, 22, 211–213.

    Article  CAS  Google Scholar 

  5. Naik, R. R., Tomczak, M. M., Luckarift, H. R., Spain, J. C., & Stone, M. O. (2004). Chemical Communications, 1684–1685.

  6. Foo, C. W. P., Patwardhan, S. V., Belton, D. J., Kitchel, B., Anastasiades, D., Huang, J., et al. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 9428–9433.

    Article  CAS  Google Scholar 

  7. Marner, W. D., Shaikh, A. S., Muller, S. J., & Keasling, J. D. (2008). Biomacromolecules, 9, 1–5.

    Article  CAS  Google Scholar 

  8. Mieszawska, A. J., Nadkarni, L. D., Perry, C. C., & Kaplan, D. L. (2010). Chemistry of Materials, 22, 5780–5785.

    Article  CAS  Google Scholar 

  9. Belton, D. J., Mieszawska, A. J., Currie, H. A., Kaplan, D. L., & Perry, C. C. (2012). Langmuir, 28, 4373–4381.

    Article  CAS  Google Scholar 

  10. Marner, W. D., Shaikh, A. S., Muller, S. J., & Keasling, J. D. (2009). Biotechnology Progress, 25, 417–423.

    Article  CAS  Google Scholar 

  11. Nam, D. H., Won, K., Kim, Y. H., & Sang, B. I. (2009). Biotechnology Progress, 25, 1643–1649.

    CAS  Google Scholar 

  12. Choi, O., Kim, B.-C., An, J.-H., Min, K., Kim, Y. H., Um, Y., et al. (2011). Enzyme and Microbial Technology, 49, 441–445.

    Article  CAS  Google Scholar 

  13. Marx, K. A. (2003). Biomacromolecules, 4, 1099–1120.

    Article  CAS  Google Scholar 

  14. Thompson, M., Arthur, C. L., & Dhaliwal, G. K. (1986). Analytical Chemistry, 58, 1206–1209.

    Article  CAS  Google Scholar 

  15. Chen, J.-C., Sadhasivam, S., & Lin, F.-H. (2011). Process Biochemistry, 46, 543–550.

    Article  CAS  Google Scholar 

  16. Kumada, Y., Murata, S., Ishikawa, Y., Nakatsuka, K., & Kishimoto, M. (2012). Journal of Biotechnology, 160, 222–228.

    Article  CAS  Google Scholar 

  17. Bizet, K., Gabrielli, C., & Perrot, H. (2000). Applied Biochemistry and Biotechnology, 89, 139–149.

    Article  CAS  Google Scholar 

  18. Seo, H., Joo, J., Ko, W., Jung, N., & Jeon, S. (2010). Nanotechnology, 21, 505502.

    Article  Google Scholar 

  19. Cheng, C. I., Chang, Y.-P., & Chu, Y.-H. (2012). Chemical Society Reviews, 41, 1947–1971.

    Article  CAS  Google Scholar 

  20. Ko, W., Yim, C., Jung, N., Joo, J., Jeon, S., Seo, H., et al. (2011). Nanotechnology, 22, 405502.

    Article  Google Scholar 

  21. Taton, T. A., Mirkin, C. A., & Letsinger, R. L. (2000). Science, 289, 1757–1760.

    Article  CAS  Google Scholar 

  22. Uludağ, Y., & Tothill, I. E. (2010). Talanta, 82, 277–282.

    Article  Google Scholar 

  23. Patwardhan, S. V., & Clarson, S. J. (2002). Silicon Chemistry, 1, 207–214.

    Article  CAS  Google Scholar 

  24. Patwardhan, S. V., Mukherjee, N., & Clarson, S. J. (2001). Journal of Inorganic and Organometallic Polymers, 11, 193–198.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Marine Biotechnology Program Funded by Ministry of Land, Transport and Maritime Affairs of Korean Government, Kwangwoon University 2013, and also supported by the Agriculture Research Center (ARC, 710003-03-3-SB120) program of the Ministry for Food, Agriculture, Forestry and Fisheries, Korea. In addition, we wish to express our gratitude to Prof. Sangmin Jeon at Pohang University of Science and Technology (POSTECH) for his valuable advice and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keehoon Won or Yong Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, D.H., Lee, JO., Sang, BI. et al. Silaffin Peptides as a Novel Signal Enhancer for Gravimetric Biosensors. Appl Biochem Biotechnol 170, 25–31 (2013). https://doi.org/10.1007/s12010-013-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0161-y

Keywords

Navigation