Skip to main content
Log in

Screening, Gene Sequencing and Characterising of Lipase for Methanolysis of Crude Palm Oil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Staphylococcus sp. WL1 lipase (LipFWS) was investigated for methanolysis of crude palm oil (CPO) at moderate temperatures. Experiments were conducted in the following order: searching for the suitable bacterium for producing lipase from activated sludge, sequencing lipase gene, identifying lipase activity, then synthesising CPO biodiesel using the enzyme. From bacterial screening, one isolated specimen which consistently showed the highest extracellular lipase activity was identified as Staphylococcus sp. WL1 possessing lipFWS (lipase gene of 2,244 bp). The LipFWS deduced was a protein of 747 amino acid residues containing an α/β hydrolase core domain with predicted triad catalytic residues to be Ser474, His704 and Asp665. Optimal conditions for the LipFWS activity were found to be at 55 °C and pH 7.0 (in phosphate buffer but not in Tris buffer). The lipase had a K M of 0.75 mM and a V max of 0.33 mM min−1 on p-nitrophenyl palmitate substrate. The lyophilised crude LipFWS performed as good as the commonly used catalyst potassium hydroxide for methanolysis of CPO. ESI-IT-MS spectra indicated that the CPO was converted into biodiesel, suggesting that free LipFWS is a worthy alternative for CPO biodiesel synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nelson, L. A., Foglia, T. A., & Marmer, W. N. (1996). Lipase-catalysed production of biodiesel. Journal of the American Oil Chemists’ Society, 73, 1191–1195.

    Article  CAS  Google Scholar 

  2. Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15.

    Article  CAS  Google Scholar 

  3. Bernardes, O. L., Bevilaqua, J. V., Leal, M. C. M., Freire, D. M. G., & Langone, M. A. P. (2007). Biodiesel fuel production by the transestrification reaction of soybean oil using immobilized lipase. Applied Biochemistry and Biotechnology, 137–140, 105–114.

    Article  Google Scholar 

  4. Kumari, V., Shah, S., & Gupta, M. N. (2007). Preparation of biodiesel by lipase-catalysed transesterification of high free fatty acid containing oil from Madhuca indica. Energy & Fuels, 21, 368–372.

    Article  CAS  Google Scholar 

  5. Rodrigues, R. C., Volpato, G., Wada, K., & Ayub, M. A. Z. (2008). Enzymatic synthesis of biodiesel from transesterification reactions of vegetable oils and short chain alcohols. Journal of the American Oil Chemists’ Society, 85, 925–930.

    Article  CAS  Google Scholar 

  6. Yahya, A. R. M., Anderson, W. A., & Moo-Young, M. (1988). Ester synthesis in lipase catalysed reactions. Enzyme and Microbial Technology, 23, 438–450.

    Article  Google Scholar 

  7. Cardenas, F., de Castro, M. S., Sanchez-Montero, J. M., Sinisterra, J. V., Valmaseda, M., Elson, S. W., et al. (2001). Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme and Microbial Technology, 28, 145–154.

    Article  CAS  Google Scholar 

  8. Hasan, F., Shah, A. L., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  9. Shimada, Y., Watanabe, Y., Sugihara, A., & Tominaga, Y. (2002). Enzymatic alcoholysis for biodiesel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 17, 133–142.

    Article  CAS  Google Scholar 

  10. Salis, S., Pinna, M., Monduzzi, M., & Solinas, V. (2005). Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology, 119, 291–299.

    Article  CAS  Google Scholar 

  11. Jarvis, G. N., & Thiele, J. H. (1977). Qualitative rhodamine B assay which uses tallow as a substrate for lipolytic obligately anaerobic bacteria. Journal of Microbial Methods, 29, 41–47.

    Article  Google Scholar 

  12. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  13. Bradford, M. M. (1976). A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  14. Sandra, P., Medvedovici, A., Zhao, Y., & David, F. (2002). Characterization of triglycerides in vegetable oils by silver-ion packed-column supercritical fluid chromatography coupled to mass spectroscopy with atmospheric pressure chemical ionization and coordination ion spray. Journal of Chromatography. A, 974, 231–241.

    Article  CAS  Google Scholar 

  15. Tiesinga, J. J. W., van Pouderoyen, G., Nardini, M., Ransac, S., & Dijkstra, B. W. (2007). Structural basis of phospholipase activity of Staphylococcus hyicus lipase. Journal of Molecular Biology, 317, 447–456.

    Article  Google Scholar 

  16. Bae, T., & Schneewind, O. (2003). The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. Journal of Bacteriology, 185, 2910–2919.

    Article  CAS  Google Scholar 

  17. Ozcan, B., Ozyilmaz, G., Cokmus, C., & Caliskan, M. (2009). Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. Journal of Industrial Microbiology and Biotechnology, 36, 105–110.

    Article  CAS  Google Scholar 

  18. Fersht, A. (1999). Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding (pp. 103–135). USA: W. H. Freeman.

    Google Scholar 

  19. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  20. Hatzinikolaou, D. G., Kourentzi, E., Stamatis, H., Christakopoulos, P., Kolisis, F. N., Kekos, D., et al. (1999). A novel lipolytic activity of Rhodotorula glutinis cells: production, partial characterization and application in the synthesis of esters. Journal of Bioscience and Bioengineering, 88, 53–56.

    Article  CAS  Google Scholar 

  21. Lévêque, N. L., Hêron, S., & Tchapla, A. (2010). Regioisomer characterization of triacylglycerols by non-aqueous reversed-phase liquid chromatography/electrospray ionization mass spectrometry using silver nitrate as a postcolumn reagent. Journal of Mass Spectrometry, 45, 284–296.

    Article  Google Scholar 

  22. Darnoko, D., & Cheryan, M. (2000). Kinetics of palm oil transesterification in a batch reactor. Journal of the American Oil Chemists’ Society, 77, 1263–1267.

    Article  CAS  Google Scholar 

  23. Noureddini, H., & Zhu, D. (1997). Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists’ Society, 74, 1457–1463.

    Article  CAS  Google Scholar 

  24. Komers, K., Skopal, F., Stloutkal, R., & Machek, J. (2002). Kinetics and mechanism of the KOH-catalyzed methanolysis of rapeseed oil for biodiesel production. European Journal of Lipid Science and Technology, 104, 728–737.

    Article  CAS  Google Scholar 

  25. Vicente, G., Martinez, M., Aracil, J., & Esteban, A. (2005). Kinetics of sunflower oil methanolysis. Industrial and Engineering Chemistry Research, 44, 5447–5454.

    Article  CAS  Google Scholar 

  26. Nurachman, Z., Hartati, Anita, S., Anward, E. E., Novirani, G., Mangindaan, B., et al. (2012). Oil productivity of the tropical marine diatom Thalassiosira sp. Bioresource Technology, 108, 240–244.

    Article  CAS  Google Scholar 

  27. Nurachman, Z., Brataningtyas, D. S., Hartati, & Panggabean, L. M. G. (2012). Oil from the tropical marine benthic-diatom Navicula sp. Applied Biochemistry and Biotechnology, 168, 1065–1075.

    Article  CAS  Google Scholar 

  28. Hersbach, G. J. M., van der Beek, P., & van Dijck, P. W. M. (1984). Antibiotics used in medical or agriculture practice: Antibacterial antibiotics. In E. J. van Damme (Ed.), Biotechnology of industrial antibiotics (pp. 45–140). USA: Mercel Deker Inc.

    Google Scholar 

  29. Minten, I. J., Claessen, V. I., Blank, K., Rowan, A. E., Nolte, R. J. M., & Cornelissen, J. J. L. M. (2011). Catalytic capsids: the art of confinement. Chemical Science, 2, 358–362.

    Article  CAS  Google Scholar 

  30. Vriezema, D. M., Hoogboom, J., Veloni, K., Takazawa, K., Christianen, P. C. M., Maan, J. C., et al. (2003). Vesicles and polymerized vesicles from thiophene-containing rod–coil block copolymers. Angewandte Chemie International Edition, 42, 772–776.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Ministry of Education and Culture, the Republic of Indonesia through Beasiswa Unggulan Program as well as Research Incentive Program for Researcher and Engineer no. 02/SK/BPPI/2009. We thank Prof. Yana Maolana Syah for his ESI-IT-MS analysis of CPO and biodiesels as well as Mr. Tubagus Andhika Nugraha for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeily Nurachman.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratnaningsih, E., Handayani, D., Khairunnisa, F. et al. Screening, Gene Sequencing and Characterising of Lipase for Methanolysis of Crude Palm Oil. Appl Biochem Biotechnol 170, 32–43 (2013). https://doi.org/10.1007/s12010-013-0160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0160-z

Keywords

Navigation