Skip to main content
Log in

Biodegradation of α-, β-, and γ-Hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The organochlorine pesticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal isomers α-, β-, and δ- continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. The present study reports the first results on the ability of two Arthrobacter strains, not directly isolated from a HCH-polluted site, to grow in a mineral salt medium containing α-, β-, or γ-HCH (100 mg l−1) as sole source of carbon. Growth of cultures and HCHs degradation by Arthrobacter fluorescens and Arthrobacter giacomelloi were investigated after 1, 2, 3, 4, and 7 days of incubation by enumerating colony forming units and GC with ECD detection, respectively. Both bacteria are able to metabolize the HCHs: A. giacomelloi is the most effective one, as after 72 h of incubation it produces 88 % degradation of α-, 60 % of β-, and 56 % of γ-HCH. The formation of possible persistent compounds was studied by GC/MS and by HPLC analysis. Pentachlorocyclohexenes and tetrachlorocyclohexenes have been detected as metabolites, which are almost completely eliminated after 72 h of incubation, while no phenolic compounds were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vijgen, J., Abhilash, P. C., Li, Y. F., Lal, R., Forter, M., Torres, J., et al. (2011). Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environmental Science and Pollution Research, 18, 152–162.

    Article  CAS  Google Scholar 

  2. Willett, K. L., Ulrich, E. M., & Hites, R. A. (1998). Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environmental Science & Technology, 32, 2197–2207.

    Article  CAS  Google Scholar 

  3. Srivastava, A., & Shivanandappa, T. (2010). Stereospecificity in the cytotoxic action of hexachlorocyclohexane isomers. Chemico-Biological Interactions, 183, 34–39.

    Article  CAS  Google Scholar 

  4. Pavlíková, N., Bláhová, L., Klán, P., Reddy Bathula, S., Sklenář, V., Giesy, J. P., et al. (2012). Enantioselective effects of alpha-hexachlorocyclohexane (HCH) isomers on androgen receptor activity in vitro. Chemosphere, 86, 65–69.

    Article  Google Scholar 

  5. Engst, R., Fritsche, W., Knoll, R., Kujawa, M., Macholz, R. M., & Straube, G. (1979). Interim result of studies of microbial isomerization of gamma-hexachlorocyclohexane. Bulletin of Environmental Contamination and Toxicology, 22, 699–707.

    Article  CAS  Google Scholar 

  6. Buser, H. R., & Muller, M. D. (1995). Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environmental Science & Technology, 29, 664–672.

    Article  CAS  Google Scholar 

  7. Phillips, T. M., Seech, A. G., Lee, H., & Trevors, J. T. (2005). Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation, 16, 363–392.

    Article  CAS  Google Scholar 

  8. Senoo, K., & Wada, H. (1989). Isolation and identification of an aerobic γ-HCH decomposing bacterium from soil. Soil Science and Plant Nutrition, 35, 79–87.

    Article  CAS  Google Scholar 

  9. Sahu, S. K., Patnaik, K. K., Sharmila, M., & Sethunathan, N. (1990). Degradation of alpha-, beta-, and gamma-hexachlorocyclohexane by a soil bacterium under aerobic conditions. Applied and Environmental Microbiology, 56, 3620–3622.

    CAS  Google Scholar 

  10. Johri, A. K., Dua, M., Tuteja, D., Saxena, R., Saxena, D. M., & Lal, R. (1998). Degradation of alpha, beta, gamma and delta-hexachlorocyclohexane by Sphingomonas paucimobilis. Biotechnology Letters, 20, 885–887.

    Article  CAS  Google Scholar 

  11. Datta, J., Maiti, A. K., Modak, D. P., Chakrabartty, P. K., Bhattacharyya, P., & Ray, P. K. (2000). Metabolism of γ-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: identification of metabolites. Journal of General and Applied Microbiology, 46, 59–67.

    Article  CAS  Google Scholar 

  12. Gupta, A., Kaushik, C. P., & Kaushik, A. (2000). Degradation of hexachlorocyclohexane (HCH; α, β, γ and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biology and Biochemistry, 32, 1803–1805.

    Article  CAS  Google Scholar 

  13. Manickam, N., Mau, M., & Schlömann, M. (2006). Characterization of the novel HCH-degrading strain Microbacterium sp. ITRC1. Applied Microbiology and Biotechnology, 69, 580–588.

    Article  CAS  Google Scholar 

  14. Manickam, N., Reddy, M. K., Saini, H. S. & Shanker, R. (2008). Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. Journal of Applied Microbiology, 104, 952–960.

    Google Scholar 

  15. Kaur, J., Verma, M. & Lal, R. (2011). Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Müller 1986 as Rhizobium aggregatum comb. nov. International Journal of Systematic and Evolutionary Microbiology, 61, 1218–1225.

  16. Pesce, S. F., & Wunderlin, D. A. (2004). Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. International Biodeterioration & Biodegradation, 54, 255–260.

    Article  CAS  Google Scholar 

  17. van Doesburg, W., van Eekert, M. H., Middeldorp, P. J., Balk, M., Schraa, G., & Stams, A. J. (2005). Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiology Ecology, 54, 87–95.

    Article  Google Scholar 

  18. Elcey, C. D., & Kunhi, A. A. M. (2010). Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation. Journal of Agricultural and Food Chemistry, 58, 1046–1054.

    Article  CAS  Google Scholar 

  19. Nagata, Y., Endo, R., Ito, M., Ohtsubo, Y., & Tsuda, M. (2007). Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Applied Microbiology and Biotechnology, 76, 741–752.

    Article  CAS  Google Scholar 

  20. Jagnow, G., Haider, K., & Ellwardt, P. C. (1977). Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Archives of Microbiology, 115, 285–292.

    Article  CAS  Google Scholar 

  21. Lal, R., Dadhwal, M., Kumari, K., Sharma, P., Singh, A., Kumari, H., Jit, S., Gupta, S. K., Nigam, A., Lal, D., Verma, M., Kaur, J., Bala, K. & Jindal, S. (2008). Pseudomonas sp. to Sphingobium indicum: a journey of microbial degradation and bioremediation of hexachlorocyclohexane. Indian Journal of Microbiology, 48, 3–18.

    Google Scholar 

  22. Camacho-Pérez, B., Ríos-Leal, E., Rinderknecht-Seijas, N., & Poggi-Varaldo, H. M. (2011). Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. Journal of Environmental Management. doi:10.1016/j.jenvman.2011.06.047.

  23. Raina, V., Rentsch, D., Geiger, T., Sharma, P., Buser, H. R., Holliger, C., et al. (2008). New metabolites in the degradation of α- and γ-hexachlorocyclohexane (HCH): pentachlorocyclohexenes are hydroxylated to cyclohexenols and cyclohexenediols by the haloalkane dehalogenase LinB from Sphingobium indicum B90A. Journal of Agricultural and Food Chemistry, 56, 6594–6603.

    Article  CAS  Google Scholar 

  24. Zheng, G., Selvam, A., & Wong, J. W. C. (2011). Rapid degradation of lindane (γ-hexachlorocyclohexane) at low temperature by Sphingobium strains. International Biodeterioration & Biodegradation, 65, 612–618.

    Article  CAS  Google Scholar 

  25. Nagata, Y., Miyauchi, K., & Takagi, M. (1999). Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. Journal of Industrial Microbiology & Biotechnology, 23, 380–390.

    Article  CAS  Google Scholar 

  26. Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., et al. (2010). Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiology and Molecular Biology Reviews, 74, 58–80.

    Article  CAS  Google Scholar 

  27. Tabata, M., Endo, R., Ito, M., Ohtsubo, Y., Kumar, A., Tsuda, M., et al. (2011). The lin genes for γ-hexachlorocyclohexane degradation in Sphingomonas sp. MM-1 proved to be dispersed across multiple plasmids. Bioscience, Biotechnology, and Biochemistry, 75, 466–472.

    Article  CAS  Google Scholar 

  28. Raina, V., Hauser, A., Buser, H. R., Rentsch, D., Sharma, P., Lal, R., et al. (2007). Hydroxylated metabolites of β- and δ-hexachlorocyclohexane: bacterial formation, stereochemical configuration, and occurrence in groundwater at a former production site. Environmental Science & Technology, 41, 4292–4298.

    Article  CAS  Google Scholar 

  29. Wu, J., Hong, Q., Han, P., He, J., & Shunpeng, L. (2007). A gene linB2 responsible for the conversion of β-HCH and 2,3,4,5,6-pentachlorocyclohexanol in Sphingomonas sp. BHC-A. Applied Microbiology and Biotechnology, 73, 1097–1105.

    Article  CAS  Google Scholar 

  30. Audus, L. J., & Symonds, K. V. (1955). Further studies on the breakdown of 2,4-D by a soil bacterium. Annals of Applied Biology, 42, 174–182.

    Article  CAS  Google Scholar 

  31. Loos, M. A., Roberts, R. N., & Alexander, M. (1967). Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter species. Canadian Journal of Microbiology, 13, 679–690.

    Article  CAS  Google Scholar 

  32. Tomati, U., Lippi, D., & Pietrosanti, W. (1970). Un complexe enzimatique capable de dégrader le 2,4-D. Mededelingen Faculteit Landbouw, Wetenschappen Gent, 35, 829–838.

    CAS  Google Scholar 

  33. Li, Q., Li, Y., Zhu, X. & Cai, B. (2008). Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil. Journal of Environmental Sciences, 20, 1226–1230.

    Google Scholar 

  34. Wang, P., Qu, Y., & Zhou, J. (2009). Biodegradation of mixed phenolic compounds under high salt conditions and salinity fluctuations by Arthrobacter sp. W1. Applied Biochemistry and Biotechnology, 159, 623–633.

    Article  CAS  Google Scholar 

  35. Sahoo, N. K., Pakshirajan, K., & Ghosh, P. K. (2011). Batch biodegradation of para-nitrophenol using Arthrobacter chlorophenolicus A6. Applied Biochemistry and Biotechnology, 165, 1587–1596.

    Article  CAS  Google Scholar 

  36. Cacciari, I., Giovannozzi-Sermanni, G., Grappelli, A., & Lippi, D. (1971). Nitrogen fixation by Arthrobacter sp. I-Taxonomic study and evidence of nitrogenase activity of two new strains. Annali di Microbiologia ed Enzimologia, 21, 97–105.

    CAS  Google Scholar 

  37. Grappelli, A., & Rossi, W. (1979). Effect of herbicides on growth, respiration and IAA biosynthesis in Arthrobacter sp. Chemosphere, 6, 377–382.

    Article  Google Scholar 

  38. Bianconi, D., De Paolis, M. R:, Agnello, A. C., Lippi, D., Pietrini, F., Zacchini, M., Polcaro, C., Donati, E., Paris, P., Spina, S. & Massacci, A. (2010). Field-scale rhizoremediation of a contaminated soil with hexachlorocyclohexane (HCH) isomers: the potential of poplars for environmental restoration and economical sustainability. In: Golubev, I. A. (ed.), Handbook of Phytoremediation, ch. 31. New York: Nova Science Publishers, Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lippi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Paolis, M.R., Lippi, D., Guerriero, E. et al. Biodegradation of α-, β-, and γ-Hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi . Appl Biochem Biotechnol 170, 514–524 (2013). https://doi.org/10.1007/s12010-013-0147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0147-9

Keywords

Navigation