Skip to main content
Log in

Adaptive Evolution of Saccharomyces cerevisiae in a Continuous and Closed Circulating Fermentation (CCCF) System Coupled with PDMS Membrane Pervaporation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As an efficient means of strain improvement, adaptive evolution is a technique with great potential. Long-term cultivation of Saccharomyces cerevisiae was performed in a polydimethylsiloxane membrane bioreactor system which was constructed by coupling the fermentation with pervaporation. A parent strain was subjected to three rounds of fermentation–screening–transfer procedure lasting 1,500 h in a continuous and closed circulating fermentation (CCCF) system, and its 600-generation descendant S33 was screened. In shaking flask culture test, the selected strain S33 from the third round showed great superiority over the parent strain in the residual broth medium, with the ethanol yield and specific ethanol productivity increasing by 34.5 and 34.7 %, respectively. In the long-term CCCF test, the fermentation performance of the descendant strain in the third round was higher than that of its parent strain in the second round. These results show the potential of this novel adaptive evolution approach in optimization of yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brennan, L., & Owende, P. (2010). Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  CAS  Google Scholar 

  2. Bialas, W., Szymanowska, D., & Grajek, W. (2010). Bioresource Technology, 101, 3126–3131.

    Article  CAS  Google Scholar 

  3. Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Biotechnology Advances, 26, 89–105.

    Article  CAS  Google Scholar 

  4. Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  5. Li, S. Z., & Chan-Halbrendt, C. (2009). Applied Energy, 86, S162–S169.

    Article  CAS  Google Scholar 

  6. Basso, L. C., de Amorim, H. V., de Oliveira, A. J., & Lopes, M. L. (2008). FEMS Yeast Research, 8, 1155–1163.

    Article  CAS  Google Scholar 

  7. Nwachukwu, I. N., Ibekwe, V. I., Nwabueze, R. N., Anyanwu, B. N., Ezeji, U., Kalu, I., et al. (2008). Life Science Journal-Acta Zhengzhou University Overseas Edition, 5, 64–68.

    CAS  Google Scholar 

  8. Cheney, D. P. (1997). Phycologia, 36, 18–18.

    Google Scholar 

  9. Katahira, S., Mizuike, A., Fukuda, H., & Kondo, A. (2006). Applied Microbiology and Biotechnology, 72, 1136–1143.

    Article  CAS  Google Scholar 

  10. Jeffries, T. W. (2006). Current Opinion in Biotechnology, 17, 320–326.

    Article  CAS  Google Scholar 

  11. Saha, B. C., & Cotta, M. A. (2011). Applied Microbiology and Biotechnology, 90, 477–487.

    Article  CAS  Google Scholar 

  12. Wang, H. Y., & Hou, L. H. (2010). Food Science and Biotechnology, 19, 145–150.

    Article  Google Scholar 

  13. Hou, L. H. (2010). Applied Biochemistry and Biotechnology, 160, 1084–1093.

    Article  CAS  Google Scholar 

  14. Shi, D. J., Wang, C. L., & Wang, K. M. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 139–147.

    Article  CAS  Google Scholar 

  15. McBryde, C., Gardner, J. M., Lopes, M. D., & Jiranek, V. (2006). American Journal of Enology and Viticulture, 57, 423–430.

    CAS  Google Scholar 

  16. Sonderegger, M., & Sauer, U. (2003). Applied and Environmental Microbiology, 69, 1990–1998.

    Article  CAS  Google Scholar 

  17. Liu, E. K., & Hu, Y. (2010). Biochemical Engineering Journal, 48, 204–210.

    Article  CAS  Google Scholar 

  18. Guimaraes, P. M. R., Francois, J., Parrou, J. L., Teixeira, J. A., & Domingues, L. (2008). Applied and Environmental Microbiology, 74, 1748–1756.

    Article  CAS  Google Scholar 

  19. Stanley, D., Fraser, S., Chambers, P. J., Rogers, P., & Stanley, G. A. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 139–149.

    Article  CAS  Google Scholar 

  20. Pretorius, I. S., & Bauer, F. F. (2002). Trends in Biotechnology, 20, 426–432.

    Article  CAS  Google Scholar 

  21. Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T., & van Maris, A. J. A. (2009). Applied and Environmental Microbiology, 75, 907–914.

    Article  CAS  Google Scholar 

  22. Stanley, D., Chambers, P. J., Stanley, G. A., Borneman, A., & Fraser, S. (2010). Applied Microbiology and Biotechnology, 88, 231–239.

    Article  CAS  Google Scholar 

  23. Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). Journal of Applied Microbiology, 109, 13–24.

    CAS  Google Scholar 

  24. Ding, W. W., Wu, Y. T., Tang, X. Y., Yuan, L., & Xiao, Z. Y. (2011). Journal of Chemical Technology and Biotechnology, 86, 82–87.

    Article  CAS  Google Scholar 

  25. Vane, L. M. (2008). Biofuels Bioproducts & Biorefining-Biofpr, 2, 553–588.

    Article  CAS  Google Scholar 

  26. Ghosh, K., & Ramachandran, K. B. (2007). Chemical and Biochemical Engineering Quarterly, 21, 285–296.

    CAS  Google Scholar 

  27. Li, J. D., Zhan, X., Huang, J. Q., & Chen, C. X. (2010). Applied Biochemistry and Biotechnology, 160, 632–642.

    Article  Google Scholar 

  28. O’Brien, D. J., Roth, L. H., & McAloon, A. J. (2000). Journal of Membrane Science, 166, 105–111.

    Article  Google Scholar 

  29. Zhong, Y. H., Xiao, Z. Y., Huang, W. X., & Wu, Y. (2003). Journal of Sichuan University (Engineering Science Edition), 35, 49–53.

    CAS  Google Scholar 

  30. Tang, X. Y., Wang, R., Xiao, Z. Y., Shi, E., & Yang, J. (2007). Journal of Applied Polymer Science, 105, 3132–3137.

    Article  CAS  Google Scholar 

  31. Shi, E., Huang, W. X., Xiao, Z. Y., Li, D. H., & Tang, M. (2007). Journal of Applied Polymer Science, 104, 2468–2477.

    Article  CAS  Google Scholar 

  32. Li, L., Xiao, Z. Y., Tan, S. J., Liang, P., & Zhang, Z. B. (2004). Journal of Membrane Science, 243, 177–187.

    Article  CAS  Google Scholar 

  33. Cheng, J. S., Zhou, X., Ding, M. Z., & Yuan, Y. J. (2009). Applied Microbiology and Biotechnology, 83, 909–923.

    Article  CAS  Google Scholar 

  34. Rangel, D. E. N. (2011). World Journal of Microbiology and Biotechnology, 27, 1281–1296.

    Article  Google Scholar 

  35. Zeyl, C., Vanderford, T., & Carter, M. (2003). Science, 299, 555–558.

    Article  CAS  Google Scholar 

  36. Cakar, Z. P., Seker, U. O. S., Tamerler, C., Sonderegger, M., & Sauer, U. (2005). FEMS Yeast Research, 5, 569–578.

    Article  CAS  Google Scholar 

  37. Cho, C. W., & Hwang, S.-T. (1991). Journal of Membrane Science, 57, 21–42.

    Article  CAS  Google Scholar 

  38. Izak, P., Schwarz, K., Ruth, W., Bahl, H., & Kragl, U. (2008). Applied Microbiology and Biotechnology, 78, 597–602.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the National Natural Science Foundation of China (grant no. 20776088).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-yi Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Cy., Tang, Xy., Xiao, Zy. et al. Adaptive Evolution of Saccharomyces cerevisiae in a Continuous and Closed Circulating Fermentation (CCCF) System Coupled with PDMS Membrane Pervaporation. Appl Biochem Biotechnol 169, 2362–2373 (2013). https://doi.org/10.1007/s12010-013-0142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0142-1

Keywords

Navigation