Skip to main content
Log in

Sodium Dodecyl Sulphate, a Strong Inducer of Thermostable Glucanhydrolase Secretion from a Derepressed Mutant Strain of Bacillus alcalophilus GCBNA-4

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, we report the optimisation of batch conditions for improved α-1,4-glucan-glucanohydrolase (GGH) secretion by a nitrous acid (NA)-treated Bacillus alcalophilus. The wild (isolate GCB-18) and NA-derivative (mutant GCBNA-4) were grown in a medium containing 10 g/L nutrient broth, 10 g/L starch, 5 g/L lactose, 2 g/L ammonium sulphate, 2 g/L CaCl2 and phosphate buffer (pH 7.6). Sodium dodecyl sulphate (SDS) was used as an enzyme inducer while batch fermentations were carried out at 40 °C. The mutant produced GGH in 40 h which was 15-fold higher than the wild in presence of SDS. Thermodynamic studies revealed that the mutant culture exhibited the capability for improved enzyme activity over a broad range of temperature (35–70 °C). The enzyme was purified by cation-exchange column chromatography with ∼80 % recovery. The performance of fuzzy-logic system control was found to be highly promising for the improved substrate conversion rate. The correlation (1.045E + 0025) among variables demonstrated the model terms as highly significant indicating commercial utility of the culture used (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Ahmad, A., Jamshid, K. C., & Miland, L. (2010). International Journal of Macromolecular, 46, 289–297.

    Article  Google Scholar 

  2. Brumm, P. J., & Teague, W. M. (1989). Biotechnology Letters, 11, 541–544.

    Article  CAS  Google Scholar 

  3. Tester, R. F., Qi, X., & Karkalas, J. (2006). Animal Feed Science and Technology, 130, 39–54.

    Article  CAS  Google Scholar 

  4. Baks, T., Bruins, M. E., Master, A. M., Janssen, A. E. M., & Boom, R. M. (2008). Journal of Agricultural and Food Chemistry, 56, 488–495.

    Article  CAS  Google Scholar 

  5. Kolawole, A. O., Ajele, J. O., & Sirdeshmukh, R. (2011). Process Biochemistry, 46, 2178–2186.

    Article  CAS  Google Scholar 

  6. Hyland, K., & Clayton, P. T. (1992). Clinical Chemistry, 38, 2405–2410.

    CAS  Google Scholar 

  7. Kasperski, A., & Miskiewicsz, T. (2002). Biotechnology Letters, 24, 17–21.

    Article  CAS  Google Scholar 

  8. Malhotra, R., Noorwez, S., & Satyanaryana, T. (2000). Letters in Applied Microbiology, 31, 378–384.

    Article  CAS  Google Scholar 

  9. Gun, E., Ster, S. C., Alexnder, A., & Gungar, N. (2004). Journal of Mathematical Sciences, 27, 17–22.

    Google Scholar 

  10. Rick, W., & Stegbauer, H. P. (1974). Methods of enzymatic analysis (2nd ed., Vol. 2, pp. 123–139). New York: Academic.

    Google Scholar 

  11. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  12. Aiba, S., Humphrey, A. E., & Millis, N. F. (1973). Biochemical engineering (2nd ed., pp. 16–28). New York: Academic.

    Google Scholar 

  13. Nandi, S., Rahman, I., Kulkarni, S. G., Tambe, S. S., & Kulkarni, B. D. (2003). Chemical Bioprocess Engineering, 2, 773–779.

    Google Scholar 

  14. Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods (7th ed., pp. 116–122). Iowa: Iowa State University Press.

    Google Scholar 

  15. Plackett, R. L., & Burman, J. P. (1946). Biometals, 33, 305–325.

    Google Scholar 

  16. Esfahani, Z., Rostami, K., & Mirdamadi, S. S. (2008). Pakistan Journal of Biological Sciences, 11, 253–259.

    Google Scholar 

  17. Jin, F., Xianzhen, L., Chunzi, Z., Qiao, S., Hua, W., Ziqiang, L., et al. (1992). Journal of Genetics and Applied Microbiology, 38, 293–302.

    Article  CAS  Google Scholar 

  18. Skolpap, W., Scharer, J. M., Douglas, P. L., & Moo, Y. M. (2004). Bioengineering and Bioscience, 86, 706–717.

    Article  CAS  Google Scholar 

  19. Lealem, F., & Gashe, B. A. (1994). Journal of Applied Bacteriology, 77, 348–352.

    Article  CAS  Google Scholar 

  20. Ulger, C., & Cirakoglu, C. (2001). World Journal of Microbiology and Biotechnology, 17, 93–94.

    Article  CAS  Google Scholar 

  21. Declerck, N., Machius, M., Joyet, P., Wiegand, G., Huber, R., & Gaillardin, C. (2003). Protein Engineering, 16, 287–293.

    Article  CAS  Google Scholar 

  22. Li, X., & Yu, H. Y. (2011). Journal of Industrial Microbiology and Biotechnology, 38, 1837–1843.

    Article  CAS  Google Scholar 

  23. Leman, P., Goesaert, H., & Delcour, J. A. (2009). Food Hydrocolloids, 23, 153–164.

    Article  CAS  Google Scholar 

  24. Ahuja, S. K., Ferreira, G. M., & Morreira, A. R. (2004). Biotechnology and Bioengineering, 85, 666–675.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Chairman, Department of Botany is thanked for his assistance and moral support. All authors contributed equally in this work. The major part of the work was carried out and completed at Biotechnology Research Centre, Department of Botany. This research received no specific grant from any funding agency in the public, commercial or not for profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikander Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamim, N., Ali, S. & Ikram-Ul-Haq Sodium Dodecyl Sulphate, a Strong Inducer of Thermostable Glucanhydrolase Secretion from a Derepressed Mutant Strain of Bacillus alcalophilus GCBNA-4. Appl Biochem Biotechnol 169, 2467–2477 (2013). https://doi.org/10.1007/s12010-013-0139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0139-9

Keywords

Navigation