Skip to main content
Log in

Covalent Immobilization of β-Glucosidase on Magnetic Particles for Lignocellulose Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter. The performance and recyclability of immobilized β-glucosidase on more complex substrate (pretreated spruce) was also studied. It was shown that adding immobilized β-glucosidase (16 U/g dry matter) to free cellulases (8 FPU/g dry matter) increased the hydrolysis yield of pretreated spruce from ca. 44 % to ca. 65 %. In addition, it was possible to re-use the immobilized β-glucosidase in the spruce and retain activity for at least four cycles. The immobilized enzyme thus shows promise for lignocellulose hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weng, J. K., Li, X., Bonawitz, N. D., & Chapple, C. (2008). Current Opinion in Biotechnology, 19, 166–172.

    Article  CAS  Google Scholar 

  2. Bommarius, A. S., Katona, A., Cheben, S. E., Patel, A. S., Ragauskas, A. J., Knudson, K., et al. (2008). Metabolic Engineering, 10, 370–381.

    Article  CAS  Google Scholar 

  3. Chauve, M., Mathis, H., Huc, D., Casanave, D., Monot, F., & Lopes Ferreira, N. (2010). Biotechnology for Biofuels, 3, 1–8.

    Article  Google Scholar 

  4. Merino, S. T., & Cherry, J. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 95–120.

    Article  CAS  Google Scholar 

  5. Sternberg, D. (1976). Applied and Environmental Microbiology, 31, 648–654.

    CAS  Google Scholar 

  6. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  7. Sheldon, R. A. (2007). Advanced Synthesis and Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  8. Koneracká, M., Kopcanský, P., Timko, M., Ramchand, C. N., Saiyed, Z. M., Trevan, M., et al. (2006). In J. M. Guisan (Ed.), Methods in biotechnology. Immobilization of enzymes and cells (pp. 217–228). Totowa: Humana.

    Chapter  Google Scholar 

  9. Schultz, N., Syldatk, C., Franzreb, M., & Hobley, T. J. (2007). Journal of Biotechnology, 132, 202–208.

    Article  CAS  Google Scholar 

  10. Franzreb, M., Ebner, N., Siemann-Herzberg, M., Hobley, T. J., & Thomas, O. R. T. (2007). In M. Etzel, A. Shukla, & S. Gadam (Eds.), Process scale bioseparations for the biopharmaceutical industry. Product recovery by high-gradient magnetic fishing (pp. 83–121). Cambridge: CRC.

    Google Scholar 

  11. Franzreb, M., Siemann-Herzberg, M., Hobley, T. J., & Thomas, O. R. T. (2006). Applied Microbiology and Biotechnology, 70, 505–516.

    Article  CAS  Google Scholar 

  12. Bissett, F., & Sternberg, D. (1978). Applied and Environmental Microbiology, 35, 750–755.

    CAS  Google Scholar 

  13. Calsavara, L. P., De Moraes, F. F., & Zanin, G. M. (2001). Applied Biochemistry and Biotechnology, 91–93, 615–626.

    Article  Google Scholar 

  14. Shinkai, M., Honda, H., & Kobayashi, T. (1991). Biocatalysis, 5, 61–69.

    Article  CAS  Google Scholar 

  15. Singh, R., Zhang, Y.-W., Nguyen, N.-P.-T., Jeya, M., & Lee, J.-K. (2011). Applied Microbiology and Biotechnology, 89, 337–344.

    Article  CAS  Google Scholar 

  16. Tu, M., Zhang, X., Kurabi, A., Gilkes, N., Mabee, W., & Saddler, J. (2006). Biotechnology Letters, 28, 151–156.

    Article  CAS  Google Scholar 

  17. Zhang, Y., Xu, J. L., Li, D., & Yuan, Z. H. (2010). Biocatalysis and Biotransformation, 28, 313–319.

    Article  CAS  Google Scholar 

  18. Dekker, R. F. H. (1990). Applied Biochemistry and Biotechnology, 23, 25–39.

    Article  CAS  Google Scholar 

  19. McCleary, B. V., & Harrington, J. (1988). Methods in Enzymology, 160, 575–583.

    Article  CAS  Google Scholar 

  20. Berghem, L. E. R., & Pettersson, L. G. (1974). European Journal of Biochemistry, 46, 295–305.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton Crocker, D. (2008). Laboratory Analytical Procedure (LAP). Determination of structural carbohydrates and lignin in biomass. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  24. Mozhaev, V. V., Melik-nubarov, N. S., Sergeeva, M. V., Sikrnis, V., & Martinek, K. (1990). Biocatalysis and Biotransformation, 3, 179–187.

    Article  CAS  Google Scholar 

  25. Pedroche, J., Yust, M., Mateo, C., Fernández-Lafuente, R., Girón-Calle, J., Alaiz, M., et al. (2007). Enzyme and Microbial Technology, 40, 1160–1166.

    Article  CAS  Google Scholar 

  26. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme and Microbial Technology, 28, 835–844.

    Article  CAS  Google Scholar 

  27. Lupoi, J. S., & Smith, E. A. (2011). Biotechnology and Bioengineering, 108, 2835–2843.

    Article  CAS  Google Scholar 

  28. Wong, L. S., Khan, F., & Micklefield, J. (2009). Chemical Reviews, 109, 4025–4053.

    Article  CAS  Google Scholar 

  29. Dekker, R. F. H. (1986). Biotechnology and Bioengineering, 28, 1438–1442.

    Article  CAS  Google Scholar 

  30. Sørensen, A., Lübeck, P. S., Lübeck, M., Teller, P. J., & Ahring, B. K. (2011). Canadian Journal of Microbiology, 57, 638–650.

    Article  Google Scholar 

  31. Balcão, V. M., Mateo, C., Fernández-Lafuente, R., Malcata, F. X., & Guisán, J. M. (2001). Biotechnology Progress, 17, 537–542.

    Article  Google Scholar 

  32. Mohy Eldin, M. S., El Enshasy, H. A., Hassan, M. E., Haroun, B., & Hassan, E. A. (2012). Journal of Applied Polymer Science, 125, 3820–3828.

    Article  CAS  Google Scholar 

  33. Rossi, L. M., Quach, A. D., & Rosenzweig, Z. (2004). Analytical and Bioanalytical Chemistry, 380, 606–613.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Nordic Energy Research (NER) fund grant TFI PK-BIO04 is gratefully acknowledged. We would like to thank Novozymes for providing the enzyme preparations (Novozym 188 and Celluclast 1.5L) and Paper and Fibre Institute Norway for providing pretreated spruce.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy John Hobley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alftrén, J., Hobley, T.J. Covalent Immobilization of β-Glucosidase on Magnetic Particles for Lignocellulose Hydrolysis. Appl Biochem Biotechnol 169, 2076–2087 (2013). https://doi.org/10.1007/s12010-013-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0122-5

Keywords

Navigation