Skip to main content
Log in

Overproduction of Polygalacturonase by Penicillium griseoroseum Recombinant Strains and Functional Analysis by Targeted Disruption of the pgg2 Gene

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Inactivation of the pgg2 gene, a polygalacturonase-encoding gene from Penicillium griseoroseum, reduced the total activity of polygalacturonase (PG) by 90 % in wild-type P. griseoroseum, which indicates that the pgg2 gene is the major gene responsible for PG production in this species. To increase PG production, the coding region of the pgg2 gene was cloned under the control of the glyceraldehyde 3-phosphate dehydrogenase (gpd) promoter and the terminator region of the tryptophan synthase (trpC) gene from Aspergillus nidulans (pAN52pgg2 vector). This vector was then used to transform P. griseoroseum. The transformed strains were characterized according to PG production using glucose, sucrose, or sugar cane juice as the carbon sources. The recombinant P. griseoroseum T146 strain contained an additional copy of the pgg2 gene, which resulted in a 12-fold increase in PG activity when compared with that detected in the supernatant of the control PG63 strain. The proteins secreted by the recombinant strain T146 showed a strong band at 38 kDa, which corresponds to the molecular weight of PG of the P. griseoroseum. The results demonstrate the significant biotechnological potential of recombinant P. griseoroseum T146 for use in PG production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benen, J. A., Kester, H. C., & Visser, J. (1999). European Journal of Biochemistry, 259, 577–585.

    Article  CAS  Google Scholar 

  2. Pedrolli, D. B., Monteiro, A. C., Gomes, E., & Carmona, E. C. (2009). The Open Biotechnol J., 3, 9–18.

    Article  CAS  Google Scholar 

  3. Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Bioresource Technology, 77, 215–227.

    Article  CAS  Google Scholar 

  4. Sandri, I. G., Fontana, R. C., Barfknecht, D. M., & Silveira, M. M. (2011). LWT- Food Science and Technology, 44(10), 2217–2222.

    Article  CAS  Google Scholar 

  5. Lang, C., & Dornenburg, H. (2000). Applied Microbiology and Biotechnology, 53(4), 366–375.

    Article  CAS  Google Scholar 

  6. Williams, H. L., Tang, Y., & Hintz, W. E. (2002). Fungal Genetics and Biology, 36(1), 71–83.

    Article  CAS  Google Scholar 

  7. Mertens, J. A., Burdick, R. C., & Rooney, A. P. (2008). Fungal Genetics and Biology, 45(12), 1616–1624.

    Article  CAS  Google Scholar 

  8. Yuan, P., Meng, K., Huang, H., Shi, P., Luo, H., Yang, P., et al. (2011). Food Chemistry, 129(4), 1369–1375.

    Article  CAS  Google Scholar 

  9. Ribon, A. O. B., Coelho, J. L. C., Barros, E. G., & Araújo, E. F. (1999). Biotechnology Letters, 21, 395–399.

    CAS  Google Scholar 

  10. Ribon, A. O. B., Queiroz, M. V., & Araújo, E. F. (2002). Genetics and Molecular Biology, 25(4), 489–493.

    Article  CAS  Google Scholar 

  11. Ribon, A. O. B., Queiroz, M. V., Coelho, J. L. C., & Araújo, E. F. (2002). Journal of Industrial Microbiology and Biotechnology, 29(3), 145–148.

    Article  CAS  Google Scholar 

  12. Pereira, J. F., Queiroz, M. V., Lopes, F. J., Rocha, R. B., Daboussi, M. J., & Araújo, E. F. (2004). Canadian Journal of Microbiology, 50(11), 891–900.

    Article  CAS  Google Scholar 

  13. Diolez, A., Langin, T., Gerlinger, C., Brygoo, Y., & Daboussi, M. J. (1993). Gene, 131, 61–67.

    Article  CAS  Google Scholar 

  14. Punt, P. J., Dingemanse, M. A., Jacobs-Meijsing, R. I. M., Pouwels, P. H., Van Den Honda, L. C. A. M. J. I. (1988) Gene. 69, 49–57.

  15. Cardoso, P. G., Ribeiro, J. B., Teixeira, J. A., Queiroz, M. V., & Araújo, E. F. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 159–166.

    Article  CAS  Google Scholar 

  16. Dias, E. S., Araújo, E. F., Guimarães, W. V., Coelho, J. L., & Silva, D. O. (1997). Revista de Microbiologia, 28, 116–120.

    Google Scholar 

  17. Queiroz, M. V., Barros, A. O., Barros, E. G., Guimarães, W. V., & Araújo, E. F. (1998). Canadian Journal of Microbiology, 44, 1–3.

    Google Scholar 

  18. Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D., & Bufton, A. W. J. (1953). Advances in Genetics, 5, 141–238.

    Article  CAS  Google Scholar 

  19. Calam, C. T. (1969) In: Norris JR, Ribbons DW (ed). Methods in microbiology. London, Academic Press I, 567–591.

  20. Specht, C. A., Dirusso, C. C., Novotny, C. P., & Ullrich, R. C. (1982). Analytical Biochemistry, 119(1), 158–163.

    Article  CAS  Google Scholar 

  21. Southern, E. M. (1975). Journal of Molecular Biology, 98, 503–517.

    Article  CAS  Google Scholar 

  22. Pfaffl, M. W. (2001). Nucleic Acids Research, 29(9), e45.

    Article  CAS  Google Scholar 

  23. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  24. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  26. Chellegatti, M. A. S. C., Fonseca, M. J. V., & Said, S. (2002). Microbiology Research, 157, 19–24.

    Article  CAS  Google Scholar 

  27. Mohamed, S. A., Farid, N. M., Hossiny, E. N., & Bassuiny, R. I. (2006). Journal of Biotechnology, 127, 54–64.

    Article  CAS  Google Scholar 

  28. Damásio, A. R. L., Silva, T. M., Maller, A., Jorge, J. A., Terenzi, H. F., & Polizeli, M. L. T. M. (2009). Applied Biochemistry and Biotechnology, 160(5), 1496–507.

    Article  Google Scholar 

  29. Levasseur, A., Benoit, I., Asther, M., & Record, E. (2004). Protein Expression and Purification, 37(1), 126–133.

    Article  CAS  Google Scholar 

  30. Jongh, W. A., & Nielsen, J. (2008). Metabolic Engineering, 10(2), 87–96.

    Article  Google Scholar 

  31. Kolar, M., Punt, P. J., Van Den Hondal, C. A. M. J. J., Sehwab, H. (1988) Gene. 62, 127–134.

  32. Chen, X., Liang, Y., Hua, J., Tao, L., Qin, W., & Chen, S. (2010). International Journal of Biological Sciences, 6(1), 96–106.

    Article  CAS  Google Scholar 

  33. Meyer, V. (2008). Biotechnology Advances, 26(2), 177–185.

    Article  CAS  Google Scholar 

  34. Bussink, H. J. D., Van Den Hombergh, J. P. T. W., Van Den Ijssel, P. R. L. A., & Visser, J. (1992). App Microbiol Biotechnol., 37, 324–329.

    Article  CAS  Google Scholar 

  35. Graessle, S., Haas, H., Friedlin, E., Kürnsteiner, H., StöZer, G., & Redl, B. (1997). Applied and Environmental Microbiology, 63, 753–756.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Brazilian agencies Minas Gerais State Research Foundation (Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)) and the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elza Fernandes de Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, J.A., Ribeiro, J.B., Gonçalves, D.B. et al. Overproduction of Polygalacturonase by Penicillium griseoroseum Recombinant Strains and Functional Analysis by Targeted Disruption of the pgg2 Gene. Appl Biochem Biotechnol 169, 1965–1977 (2013). https://doi.org/10.1007/s12010-013-0121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0121-6

Keywords

Navigation