Skip to main content
Log in

Expression and Large-Scale Production of Human Tissue Plasminogen Activator (t-PA) in Transgenic Tobacco Plants Using Different Signal Peptides

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An attempt was made to assess the expression level and targeting of a human protein entitled recombinant tissue plasminogen activator (rt-PA) through accumulation in three cellular compartments including the endoplasmic reticulum and cytosolic and apoplastic spaces in transgenic tobacco plants. In this context, three chimeric constructs pBI-SP-tPA, pBI-tPA-KDEL, and pBI-Ext-tPA were employed and transferred into the tobacco plants through a popular transformation-based system called Agrobacterium tumefaciens. As an initial screening system, the incorporation of the rt-PA gene in the genomic DNA of tobacco transgenic plants and the possible existence of the rt-PA-specific transcript in the total RNAs of transgenic plant leaves were confirmed via PCR and reverse transcription (RT)-PCR, respectively. Southern blot analysis, in addition, was used to determine the copy number of the corresponding gene (i.e., t-PA) transformed into the each transgenic plant; one or more copies were detected regarding transformants derived from all three abovementioned constructs. According to the enzyme-linked immunosorbent assay, the mean values of t-PA expression were calculated as 0.50, 0.68, and 0.69 μg/mg of the total soluble protein when a collection containing 30 transgenic plants transformed with pBI-SP-tPA, pBI-tPA-KDEL, and pBI-Ext-tPA was taken into account, respectively. The zymography assay was lastly performed and concluded the expression of the properly folded rt-PA in this expression system. Our results, altogether, revealed that tobacco plants could be utilized as a bioreactor system for the large-scale production of enzymatically active t-PA and presumably other therapeutic recombinant proteins in large quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fischer, R., & Emans, N. (2000). Molecular farming of pharmaceutical proteins. Transgenic Research, 9, 279–299.

    Article  CAS  Google Scholar 

  2. Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular biotechnology: principles and applications of recombinant DNA (4th ed.). Washington, DC: ASM Press.

    Google Scholar 

  3. Cheung, S. C., Sun, S. S., Chan, J. C., & Tong, P. C. (2009). Expression and subcellular targeting of human insulin-like growth factor binding protein-3 in transgenic tobacco plants. Transgenic Research, 18, 943–951.

    Article  CAS  Google Scholar 

  4. Goddijn, O. J. M., & Pen, J. (1995). Plants as bioreactors. Trends in Biotechnology, 13, 379–387.

    Article  CAS  Google Scholar 

  5. Daniell, H., Streatfield, S. J., & Wycoff, K. (2001). Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends in Plant Science, 6, 219–226.

    Article  CAS  Google Scholar 

  6. Conley, A. J., Jevnikar, A. M., Menassa, R., & Brandle, J. E. (2011). Temporal and spatial distribution of erythropoietin in transgenic tobacco plants. Transgenic Research, 19, 291–298.

    Article  Google Scholar 

  7. Ma, J. K., Drake, P. M., & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature Review Genetics, 4, 794–805.

    Article  CAS  Google Scholar 

  8. Fischer, R., Stoger, E., Schillberg, S., Christou, P., & Twyman, R. M. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 7, 152–158.

    Article  CAS  Google Scholar 

  9. Wildem, C. D., Houdt, H. V., Buck, S. D., Angenon, G., Jaeger, G. D., & Depicker, A. (2000). Plants as bioreactors for protein production: Avoiding the problem of transgene silencing. Plant Molecular Biology, 43, 347–359.

    Article  Google Scholar 

  10. Cunha, N. B., Murad, A. M., Cipriano, T. M., Araujo, A. C., Aragao, F. J., Leite, A., et al. (2011). Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Reseach, 20, 811–826.

    Article  CAS  Google Scholar 

  11. Colgan, R., Atkinson, C. J., Paul, M., Hassan, S., Drake, P. M., Sexton, A. L., et al. (2010). Optimisation of contained Nicotiana tabacum cultivation for the production of recombinant protein pharmaceuticals. Transgenic Reseach, 19, 241–256.

    Article  CAS  Google Scholar 

  12. Sheen, S. J. (1983). Biomass and chemical composition of tobacco plants under high density growth. Beiträge zur Tabakforschung International, 12, 35–42.

    CAS  Google Scholar 

  13. Rymerson, R. T., Menassa, R., & Brandle, J. E. (2002). Tobacco, a platform for the production of recombinant proteins. In L. Erickson, J. Brandle, & R. T. Rymerson (Eds.), Molecular farming of plants and animals for human and veterinary medicine (pp. 1–32). Amsterdam: Kluwer.

    Google Scholar 

  14. Twyman, R. M., Stoger, E., Schillberg, S., Christou, P., & Fischer, R. (2003). Molecular farming in plants: host systems and expression technology. Trends in Biotechnology, 21, 570–578.

    Article  CAS  Google Scholar 

  15. Hahn, B. S., Sim, J. S., Kim, H. M., Ahn, M. Y., Pak, H. K., Kim, N. A., et al. (2009). Expression and characterization of human tissue-plasminogen activator in transgenic tobacco plants. Plant Molecular Biology Reporter, 27, 209–216.

    Article  CAS  Google Scholar 

  16. Hemayatkar, M., Mahboudi, F., Majidzadeh, A. K., Davami, F., Vaziri, B., Barkhordari, F., et al. (2010). Increased expression of recombinant human tissue plasminogen activator in Leishmania tarentolae. Biotechnology Journal, 5, 1198–1206.

    Article  CAS  Google Scholar 

  17. Collen, D., & Lijnen, H. R. (2004). Tissue-type plasminogen activator: A historical perspective and personal account. Journal of Thrombosis and Haemostasis, 2, 541–546.

    Article  CAS  Google Scholar 

  18. Borisov, O. V., Field, M., Ling, V. T., & Harris, R. J. (2009). Characterization of oligosaccharides in recombinant tissue plasminogen activator produced in Chinese hamster ovary cells: Two decades of analytical technology development. Analytical Chemistry, 81, 9744–9754.

    Article  CAS  Google Scholar 

  19. Nazari, R., & Davoudi, N. (2011). Cloning and expression of truncated form of tissue plasminogen activator in Leishmania tarentolae. Biotechnology Letters, 33, 503–508.

    Article  CAS  Google Scholar 

  20. Pennica, D., et al. (1983). Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature, 301, 214–221.

    Article  CAS  Google Scholar 

  21. Qiu, J., Swartz, J. R., & Georgiou, G. (1998). Expression of active human tissue-type plasminogen activator in Escherichia coli. Applied and Environmental Microbiology, 64, 4891–4896.

    CAS  Google Scholar 

  22. Manosroi, J., Tayapiwatana, C., Gotz, F., Werner, R. G., & Manosroi, A. (2001). Secretion of active recombinant human tissue plasminogen activator derivatives in Escherichia coli. Applied and Environmental Microbiology, 67, 2657–2664.

    Article  CAS  Google Scholar 

  23. Kim, J. Y., Fogarty, E. A., Lu, F. J., Zhu, H., Wheelock, G. D., Henderson, L. A., et al. (2005). Twin-arginine translocation of active human tissue plasminogen activator in Escherichia coli. Applied and Environmental Microbiology, 71, 8451–8459.

    Article  CAS  Google Scholar 

  24. Wiebe, M. G., Karandikar, A., Robson, G. D., Trinci, A. P. J., Candia, J. L. F., Trappe, S., et al. (2001). Production of tissue plasminogen activator (t-PA) in Aspergillus niger. Biotechnology and Bioengineering, 76, 164–174.

    Article  CAS  Google Scholar 

  25. Twyman, R. M., Schillberg, S., & Fischer, R. (2005). Transgenic plants in the biopharmaceutical market. Expert Opinion on Emerging Drugs, 10, 185–218.

    Article  CAS  Google Scholar 

  26. Tremblay, R., Wang, D., Jevnikar, A. M., & Ma, S. (2010). Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnology Advances, 28, 214–21.

    Article  CAS  Google Scholar 

  27. Masoumiasl, A., Jalali-Javaran, M., Mahboudi, F., & Alizadeh, H. (2010). Cloning and expression of tissue plasminogen activator (t-pa) gene in tobacco plants. Scientific Research and Essays, 5, 917–922.

    Google Scholar 

  28. Nabiabad, H. S., Yaghoobi, M. M., Javaran, M. J., & Hosseinkhani, S. (2011). Expression analysis and purification of human recombinant tissue type plasminogen activator (rt-PA) from transgenic tobacco plants. Preparative Biochemistry and Biotechnology, 41, 175–186.

    Article  CAS  Google Scholar 

  29. Kim, S. R., Sim, J. S., Ajjappala, H., Kim, Y. H., & Hahn, B. S. (2012). Expression and large-scale production of the biochemically active human tissue-plasminogen activator in hairy roots of Oriental melon (Cucumis melo). Journal of Bioscience and Bioengineering, 113, 106–111.

    Article  CAS  Google Scholar 

  30. Richardson, A. E., Hadobas, P. A., & Hayes, J. E. (2001). Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant Journal, 25, 641–649.

    Article  CAS  Google Scholar 

  31. Llop-Tous, I., Madurga, S., Giralt, E., Marzabal, P., Torrent, M., & Ludevid, M. D. (2010). Relevant elements of a maize gamma-zein domain involved in protein body biogenesis. The Journal of Biological Chemistry, 285, 35633–35644.

    Article  CAS  Google Scholar 

  32. Horsch, R. B., Fry, J., Hoffmann, N., Neidermeyer, J., Ogers, S. G., & Fraley, R. T. (1998). Leaf disc transformation. Plant Molecular Biology Manual, A5, 1–9.

    Google Scholar 

  33. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  34. Hu, D., Tan, X., Sato, T., Yamagata, S., & Yamagata, T. (2006). Apparent suppression of MMP-9 activity by GD1a as determined by gelatin zymography. Biochemical and Biophysical Research Communications, 349, 426–431.

    Article  CAS  Google Scholar 

  35. Cramer, C. L., Boothe, J. G., & Oishi, K. K. (1999). Transgenic plants for therapeutic A proteins: Linking upstream and downstream strategies. Current Topics in Microbiology and Immunology, 240, 95–118.

    CAS  Google Scholar 

  36. Ruggiero, F., Exposito, J. Y., Bournat, P., Gruber, V., Perret, S., Comte, J., et al. (2000). Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Letters, 469, 132–136.

    Article  CAS  Google Scholar 

  37. Almquist, K. C., McLean, M. D., Niu, Y., Byrne, G., Olea-Popelka, F. C., Murrant, C., et al. (2006). Expression of an anti-botulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco. Vaccine, 24, 2079–2086.

    Article  CAS  Google Scholar 

  38. Ding, S. H., Huang, L. Y., Wang, Y. D., Sun, H. C., & Xiang, Z. H. (2006). High-level expression of basic fibroblast growth factor in transgenic soybean seeds and characterization of its biological activity. Biotechnology Letters, 28, 869–875.

    Article  CAS  Google Scholar 

  39. Lantz, M. S., & Ciborowski, P. (1994). Zymographic techniques for detection and characterization of microbial proteases. Methods in Enzymology, 235, 563–594.

    Article  CAS  Google Scholar 

  40. Snoek-van Beurden, P. A., & Von den Hoff, J. W. (2005). Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques, 38, 73–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houshang Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goojani, H.G., Javaran, M.J., Nasiri, J. et al. Expression and Large-Scale Production of Human Tissue Plasminogen Activator (t-PA) in Transgenic Tobacco Plants Using Different Signal Peptides. Appl Biochem Biotechnol 169, 1940–1951 (2013). https://doi.org/10.1007/s12010-013-0115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0115-4

Keywords

Navigation