Skip to main content
Log in

Multistep Conversion of para-Substituted Phenols by Phenol Hydroxylase and 2,3-Dihydroxybiphenyl 1,2-Dioxygenase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A multistep conversion system of para-substituted phenols by recombinant phenol hydroxylase (PHIND) and 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphCLA-4) was constructed in this study. Docking studies with different para-substituted phenols and corresponding catechols inside of the active site of PHIND and BphCLA-4 predicted that all the substrates should be transformed. High-performance liquid chromatography–mass spectrometry analysis showed that the products of multistep conversion were the corresponding para-substituted catechols and semialdehydes. For the first-step conversion, the formation rate of 4-fluorocatechol (0.39 μM/min/mg dry weight) by strain PHIND hydroxylation was 1.15, 6.50, 3.00, and 1.18-fold higher than the formation of 4-chlorocatechol, 4-bromocatechol, 4-nitrocatechol, and 4-methylcatechol, respectively. For the second-step conversion, the formation rates of semialdehydes by strain BphCLA-4 were as follows: 5-fluoro-HODA > 5-chloro-HODA > 2-hydroxy-5-nitro-ODA > 5-bromo-HODA > 2-hydroxy-5-methyl-ODA. The present study suggested that the multistep conversion by both ring hydroxylase and cleavage dioxygenase should be potential in the synthesis of industrial precursors and provide a novel avenue in the wastewater recycling treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Böttcher, D., & Bornscheuer, U. T. (2010). Current Opinion in Microbiology, 13, 274–282.

    Article  Google Scholar 

  2. Schoemaker, H. E., Mink, D., & Wubbolts, M. G. (2003). Science, 299, 1694–1697.

    Article  CAS  Google Scholar 

  3. Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Nature, 409, 258–268.

    Article  CAS  Google Scholar 

  4. Van Beilen, J. B., Duetz, W. A., Schmid, A., & Witholt, B. (2003). Trends in Biotechnology, 21, 170–177.

    Article  Google Scholar 

  5. Tao, Y., Bentley, W. E., & Wood, T. K. (2005). Applied Microbiology and Biotechnology, 68, 614–621.

    Article  CAS  Google Scholar 

  6. Li, Z., van Beilen, J. B., Duetz, W. A., Schmid, A., de Raadt, A., Griengl, H., et al. (2002). Current Opinion in Chemical Biology, 6, 136–144.

    Article  CAS  Google Scholar 

  7. Urlacher, V. B., & Schmid, R. D. (2006). Recent advances in oxygenase-catalyzed biotransformations. Current Opinion in Chemical Biology, 10, 156–161.

    Article  CAS  Google Scholar 

  8. Garikipati, S. V., McIver, A. M., & Peeples, T. L. (2009). Applied and Environmental Microbiology, 75, 6545–6552.

    Article  CAS  Google Scholar 

  9. Coulombel, L., Nolan, L. C., Nikodinovic, J., Doyle, E. M., & O’Connor, K. E. (2011). Applied Microbiology and Biotechnology, 89, 1867–1875.

    Article  CAS  Google Scholar 

  10. Roberts, S. J., Morris, J. C., Dobson, R. C. J., & Gerrard, J. A. (2003). Bioorganic & Medicinal Chemistry Letters, 2, 265–267.

    Article  Google Scholar 

  11. Gough, S. P., Kannangara, C. G., & Bock, K. (1989). Carlsberg Research Communications, 54, 99–108.

    Article  CAS  Google Scholar 

  12. Grimm, B., Bull, A., & Breu, V. (1991). Molecular Genetics and Genomics, 225, 1–10.

    CAS  Google Scholar 

  13. Ferreira, M. I., Iida, T., Hasan, S. A., Nakamura, K., Fraaije, M. W., Janssen, D. B., et al. (2009). Applied and Environmental Microbiology, 75, 7767–7773.

    Article  CAS  Google Scholar 

  14. Kitagawa, W., Kimura, N., & Kamagata, Y. (2004). Journal of Bacteriology, 186, 4894–4902.

    Article  CAS  Google Scholar 

  15. Powlowski, J., & Shingler, V. (1994). Biodegradation, 5, 219–236.

    Article  CAS  Google Scholar 

  16. Kirchner, U., Westphal, A. H., Müller, R., & van Berkel, W. J. (2003). Journal of Biological Chemistry, 284, 47545–47553.

    Article  Google Scholar 

  17. Schlömann, M. (1994). Biodegradation, 5, 301–321.

    Article  Google Scholar 

  18. Parales, R. E., Bruce, N. C., Schmid, A., & Wackett, L. P. (2001). Applied and Environmental Microbiology, 68, 4699–4709.

    Article  Google Scholar 

  19. Marshall, C. T., & Woodley, J. M. (1995). Nature Biotechnology, 13, 1072–1078.

    Article  CAS  Google Scholar 

  20. Bühler, B., Schmid, A., Hauer, B., & Witholt, B. (2000). Journal of Biological Chemistry, 275, 10085–10092.

    Article  Google Scholar 

  21. May, S. W., & Katopodis, A. G. (1986). Enzyme and Microbial Technology, 8, 17–21.

    Article  CAS  Google Scholar 

  22. Bell-Parikh, L. C., & Guengerich, F. P. (1999). Journal of Biological Chemistry, 274, 23833–23840.

    Article  CAS  Google Scholar 

  23. Keener, W. K., & Arp, D. J. (1994). Applied and Environmental Microbiology, 60, 1914–1920.

    CAS  Google Scholar 

  24. Li, A., Qu, Y. Y., Zhou, J. T., & Ma, F. (2009). FEMS Microbiology Letters, 292, 231–239.

    Article  CAS  Google Scholar 

  25. Tan, D. H., Qu, Y. Y., Ma, F., Zhou, J. T., & Yuan, X. D. (2010). Journal of Harbin Institute of Technology, 42, 1977–1980.

    CAS  Google Scholar 

  26. Qu, Y. Y., Zhou, H., Li, A., Ma, F., & Zhou, J. T. (2011). Applied Microbiology and Biotechnology, 89, 655–663.

    Article  CAS  Google Scholar 

  27. Wu, Z. L., Podust, L. M., & Guengerich, F. P. (2005). Journal of Biological Chemistry, 280, 41090–41100.

    Article  CAS  Google Scholar 

  28. Furukawa, K., & Arimura, N. (1987). Journal of Bacteriology, 169, 924–927.

    CAS  Google Scholar 

  29. Eltis, L. D., Hofmann, B., Hecht, H. J., Lünsdorf, H., & Timmis, K. N. (1993). Journal of Biological Chemistry, 268, 2727–2732.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (nos. 21176040 and 51078054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Y., Shi, S., Ma, Q. et al. Multistep Conversion of para-Substituted Phenols by Phenol Hydroxylase and 2,3-Dihydroxybiphenyl 1,2-Dioxygenase. Appl Biochem Biotechnol 169, 2064–2075 (2013). https://doi.org/10.1007/s12010-013-0112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0112-7

Keywords

Navigation