Skip to main content
Log in

Lime Pretreatment and Fermentation of Enzymatically Hydrolyzed Sugarcane Bagasse

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90 h, 90 °C, 0.47 g lime/g bagasse) and industrially realistic conditions of hydrolysis (12.7 FPU/g of cellulase and 7.3 CBU/g of β-glucosidase), 139.6 kg lignin/ton raw bagasse and 126.0 kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1 kg ethanol/ton raw bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. UNICA (Sao Paulo Sugarcane Agroindustry Union). (2012). Available at: http://www.unica.com.br/noticias/show.asp?nwsCode=EB4B5586-5F2B-4F1A-888B-418400C2F215. Last accessed: 25 Sep 2012.

  2. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biotechnology Advances, 29, 675–685.

    Article  CAS  Google Scholar 

  3. Rabelo, S. C., Maciel Filho, R., & Costa, A. C. (2009). Applied Biochemistry and Biotechnology, 153, 139–150.

    Article  CAS  Google Scholar 

  4. Fuentes, L. L. G., Rabelo, S. C., Maciel Filho, R., & Costa, A. C. (2011). Applied Biochemistry and Biotechnology, 163, 612–625.

    Article  CAS  Google Scholar 

  5. Falls, M., & Holtzapple, M. T. (2011). Applied Biochemistry and Biotechnology, 165, 506–522.

    Article  CAS  Google Scholar 

  6. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008a). NREL/TP-510-42618. Golden: National Renewable Energy Laboratory.

  7. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2008b). TP-510-42623. Golden: National Renewable Energy Laboratory.

  8. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  9. Wood, T. M., & Bhat, K. M. (1988). In W. A. Wood & S. T. Kellog (Eds.), Methods in enzymology. Methods for measuring cellulase activities (Vol. 1, pp. 81–112). San Diego: Academic.

    Google Scholar 

  10. Jacobsen, S. E., & Wyman, C. E. (2002). Industrial and Engineering Chemistry Research, 41, 1454–1461.

    Article  CAS  Google Scholar 

  11. Vidal, B. C., Jr., Dien, B. S., Ting, K. C., & Singh, V. (2011). Applied Biochemistry and Biotechnology, 164, 1405–1421.

    Article  CAS  Google Scholar 

  12. Rabelo, S. C., Maciel Filho, R., & Costa, A. C. (2008). Applied Biochemistry and Biotechnology, 144, 87–100.

    Article  CAS  Google Scholar 

  13. Rocha, G. J. M., Martín, C., Silva, V. F. N., Gómez, E. O., & Gonçalves, A. R. (2012). Bioresource Technology, 111, 447–452.

    Article  CAS  Google Scholar 

  14. Bommarius, A. S., Katona, A., Cheben, S. E., Patel, A. S., Ragauskas, A. J., Knudson, K., et al. (2008). Metabolic Engineering, 10, 370–381.

    Article  CAS  Google Scholar 

  15. Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Bioresource Technology, 102(23), 10915–10921.

    Article  CAS  Google Scholar 

  16. Rivera, E. C., Rabelo, S. C., Garcia, D. R., Maciel Filho, R., & Costa, A. C. (2010). Journal of Chemical Technology and Biotechnology, 85, 983–992.

    Article  CAS  Google Scholar 

  17. Rabelo, S. C., Carrere, H., Maciel Filho, R., & Costa, A. C. (2011). Bioresource Technology, 102, 7887–7895.

    Article  CAS  Google Scholar 

  18. Chauve, M., Mathis, H., Huc, D., Casanave, D., Monot, F., & Ferreira, N. L. (2010). Biotechnology Biofuels, 3(1), 3.

    Article  Google Scholar 

  19. Shen, F., Zhong, Y., Saddler, J. N., & Liu, R. (2011). Applied Biochemistry and Biotechnology, 165, 1024–1036.

    Article  CAS  Google Scholar 

  20. Wang, W., Kang, L., Wei, H., Arora, R., & Lee, Y. Y. (2011). Applied Biochemistry and Biotechnology, 164, 1139–1149.

    Article  CAS  Google Scholar 

  21. Kristensen, J. B., Felby, C., & Jørgensen, H. (2009). Biotechnology Biofuels, 2(1), 11.

    Article  Google Scholar 

  22. Xue, Y., Jameel, H., Phillips, R., & Chang, H. (2012). Journal of Industrial and Engineering Chemistry, 18, 707–714.

    Article  CAS  Google Scholar 

  23. Yang, J., Zhang, X., Yong, Q., & Shiyuan, Y. (2011). Bioresource Technology, 102, 4905–4908.

    Article  CAS  Google Scholar 

  24. Clark, T., & Mackie, K. L. (1984). Journal of Chemical and Biotechnology, 34, 101–110.

    Article  Google Scholar 

  25. Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., & Bont, J. A. M. (1994). Trends in Biotechnology, 12(10), 409–415.

    Article  CAS  Google Scholar 

  26. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  27. Olsson, L., & Hahn-Hägerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.

    Article  CAS  Google Scholar 

  28. Pierre, G., Maache-Rezzoug, Z., Sanniera, F., Rezzougb, S. A., & Maugarda, T. (2011). Process Biochemistry, 46, 2194–2200.

    Article  CAS  Google Scholar 

  29. Conde-Mejíaa, C., Jiménez-Gutiérreza, A., & El-Halwagi, M. (2012). Process Safety and Environmental Protection, 90, 189–202.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Fapesp (project 07/01525-9) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita C. Rabelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabelo, S.C., Maciel Filho, R. & Costa, A.C. Lime Pretreatment and Fermentation of Enzymatically Hydrolyzed Sugarcane Bagasse. Appl Biochem Biotechnol 169, 1696–1712 (2013). https://doi.org/10.1007/s12010-013-0097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0097-2

Keywords

Navigation