Skip to main content
Log in

Enhanced Production of Bacterial Cellulose by Using Gluconacetobacter hansenii NCIM 2529 Strain Under Shaking Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH 5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amor, Y., Haigler, C. H., Johnson, S., Wainscott, M., & Delmer, D. P. (1995). Proceedings of the National Academy of Science USA, 92, 9353–9357.

    Article  CAS  Google Scholar 

  2. Jahan, F., Kumar, V., Rawat, G., & Saxena, R. K. (2012). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-012-9595-x.

  3. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66(3), 506–77.

    Article  CAS  Google Scholar 

  4. Brown, R. M. (2004). Journal of Polymer Science Part A: Polymer Chemistry, 42, 487–495.

    Article  CAS  Google Scholar 

  5. Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., & Mitsuhashi, S. J. (1990). Materials Science, 25, 2997–3001.

    Article  CAS  Google Scholar 

  6. Yoshinaga, F., Tonouchi, N., & Watanabe, K. (1997). Bioscience Biotechnology Biochemistry, 61, 219–224.

    Article  CAS  Google Scholar 

  7. Klemm, D., Schumann, D., Udhard, U., & Marsch, S. (2001). Progress in Polymer Science, 26, 1561–1603.

    Article  CAS  Google Scholar 

  8. Fontana, J. D., de Sousa, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., Gallotti, B. J., de Sousa, S. J., Narcisco, G. P., Bichara, J. A., & Farah, L. F. (1990). Applied Biochemistry and Biotechnology, 25, 253–264.

    Article  Google Scholar 

  9. Okiyama, A., Motoki, M., & Yamanaka, S. (1993). Food Hydrocolloids, 6, 503–511.

    Article  CAS  Google Scholar 

  10. Eming, S., Smola, H., & Kreig, T. (2002). Cells, Tissues, Organs, 172, 105–117.

    Article  CAS  Google Scholar 

  11. Czaja, W. K., Young, D. J., & Kawecki, M., Jr. (2007). Biomacromolecules, 8, 1–12.

    Article  CAS  Google Scholar 

  12. Zhigang, L., Yanyan, Z., Yujie, C., Ning, X., Wanying, Y., & Bo, S. (2011). World Journal of Microbiology and Biotechnology. doi:10.1007/s11274-011-0692-8.lo.

  13. Jonas, R., & Farah, L. H. (1998). Polymer Degradation and Stability, 59, 101–106.

    Article  CAS  Google Scholar 

  14. Shoda, M., & Sugano, Y. (2005). Biotechnology and Bioprocess Engineering, 10, 1–8.

    Article  CAS  Google Scholar 

  15. Chawla, P. R., Ishwar, B. B., Survase, S. A., & Singhal, R. S. (2009). Food Technology and Biotechnology, 47, 107–124.

    CAS  Google Scholar 

  16. Jung, J. Y., Park, Y. H., & Park, J. K. (2003). Korean Journal of Biotechnology and Bioengineering, 18, 94–99.

    Google Scholar 

  17. Nguyen, V. T., Flanagan, B., Gidley, M. J., & Dykes, G. A. (2008). Current Microbiology, 57(5), 449–453.

    Article  CAS  Google Scholar 

  18. Bae, S. O., & Shoda, M. (2004). Biotechnology Progress, 20(5), 1366–1371.

    Article  CAS  Google Scholar 

  19. Son, C., Chung, S., Lee, J., & Kim, S. (2002). Journal of Microbiology and Biotechnology, 12(5), 722–728.

    Google Scholar 

  20. Jung, J. Y., Park, J. K., & Chang, H. N. (2005). Enzyme Microbiology Technology, 37, 347–354.

    Article  CAS  Google Scholar 

  21. Park, J. K., Jung, J. Y., & Park, Y. H. (2003). Biotechnology Letters, 25, 2055–2059.

    Article  CAS  Google Scholar 

  22. Sani, A., & Dahman, Y. (2010). Journal of Chemical Technology and Biotechnology, 85, 151–164.

    CAS  Google Scholar 

  23. Son, H. J., Kim, H. G., Kim, K. K., Kim, H. S., Kim, Y. G., & Lee, S. J. (2003). Bioresource Technology, 86, 215–219.

    Article  Google Scholar 

  24. Lisdiyanti, P., Navarro, R. R., Uchimura, T., & Komagata, K. (2006). International Journal of Systematic and Evolutionary Microbiology, 56, 2101–2111.

    Article  CAS  Google Scholar 

  25. Gromet-Elhanan, Z., & Hestrin, S. (1963). Journal of Bacteriology, 85, 284–292.

    CAS  Google Scholar 

  26. Benziman, M., Haigler, C. H., Jr, B., White, A. R., & Cooper, K. M. (1980). Proceeding National Academy Sciences, 77(11), 6678–6682.

    Article  CAS  Google Scholar 

  27. Iyer, P. R., Geib, S. M., Catchmark, J., Kao, T., & Tien, M. (2010). Journal of Bacteriology, 192(16), 4256–4257.

    Article  CAS  Google Scholar 

  28. Hestrin, S., & Schramm, M. (1954). Biochemical Journal, 58, 345–352.

    CAS  Google Scholar 

  29. Mandels, M., Andreotti, R., & Roche, C. (1976). Biotechnology and Bioengineering Symposium, 6, 21–33.

    CAS  Google Scholar 

  30. Worthing, V. (1993). Trypsin. In: Worthington enzyme manual (pp. 374–391). Frrehold: Worthington Biochemical.

    Google Scholar 

  31. Bernfield, P. N. (1955). In S. Colowick & N. O. Kaplan (Eds.), Methods of enzymology (pp. 1–149). New York: Academic.

    Google Scholar 

  32. Asraf, S. A. K. S., Rajnish, K. N., & Gunasekaran, P. (2011). IIOAB, 2(3), 1–7.

    CAS  Google Scholar 

  33. Wood, P. J. (1980). Industrial and Engineering Chemistry Product Research and Development, 19, 19–23.

    Article  CAS  Google Scholar 

  34. Deinema, M. H., & Zevenhuizen, L. P. (1971). Archiv für Mikrobiologie, 78, 42–51.

    Article  CAS  Google Scholar 

  35. Romling, U. (2002). Research in Microbiology, 153, 205–212.

    Article  Google Scholar 

  36. Pourramezan, G. Z., Roayaei, A. M., & Qezelbash, Q. R. (2009). Biotechnology, 8(1), 150–154.

    Article  CAS  Google Scholar 

  37. Keshk, M. A. S. S., & Sameshima, K. (2005). African Journal of Biotechnology, 4, 478–482.

    CAS  Google Scholar 

  38. Zeng, X., Small, D. P., & Wan, W. (2011). Carbohydrate Polymers, 85, 506–513.

    Article  CAS  Google Scholar 

  39. Joseph, G., Rowe, G., Margaritis, A., & Wan, W. K. (2003). Journal of Chemical Technology and Biotechnology, 78(9), 964–970.

    Article  CAS  Google Scholar 

  40. Park, S. T., Kim, E., & Kim, Y. M. (2006). Journal of Microbiology and Biotechnology, 16(6), 961–964.

    CAS  Google Scholar 

  41. Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., & Yoshinaga, F. (1996). Bioscience, Biotechnology, and Biochemistry, 60, 575–579.

    Article  CAS  Google Scholar 

  42. Son, H. J., Heo, M. S., Kim, Y. G., & Lee, S. J. (2001). Biotechnology and Applied Biochemistry, 33, 1–5.

    Article  CAS  Google Scholar 

  43. Ito, F., Amano, Y., Nozaki, Y. K., Saxena, I. M., Brown, M. R., Jr., & Kanda, T. (2004). Journal of Biology Macromolecules, 4(3), 83–90.

    CAS  Google Scholar 

  44. Karmarkar, M., & Ray, R. R. (2011). World Journal of Science and Technology, 1(6), 26–32.

    Google Scholar 

  45. Fontana, J. D., et al. (1997). Applied Biochemistry and Biotechnology, 63/65, 327–338.

    Article  Google Scholar 

  46. Jia, S., et al. (2004). Biotechnology and Bioprocess Engineering, 9, 166–170.

    Article  CAS  Google Scholar 

  47. Heo, M.-S., & Son, H.-J. (2002). Applications of Biochemistry, 36, 41–45.

    CAS  Google Scholar 

  48. Ross, P., Mayer, R., & Benzimann, M. (1991). Microbiological Reviews, 55, 35–58.

    CAS  Google Scholar 

  49. Jagannath, A., Kalaiselvan, A., Manjunatha, S. S., Raju, P. S., & Bawa, A. S. (2008). World Journal of Microbiology and Biotechnology, 24, 2593–2599.

    Article  CAS  Google Scholar 

  50. Galas, E., Krystynowicz, A., Tarabasz-Szymanska, L., Pankiewictz, R., & Zyska, M. (1999). Acta Biotechnologica, 19, 251–260.

    Article  CAS  Google Scholar 

  51. Cannon, R. E., & Anderson, S. M. (1991). Critical Reviews in Microbiology, 17, 435–447.

    Article  CAS  Google Scholar 

  52. Romano, M., Franzosi, G., Seves, A., & Sora, S. (1989). Cellulose Chemistry Technology, 23, 217–223.

    CAS  Google Scholar 

  53. Geyer, U., Heinz, T., Stein, A., Klemm, D., Marsch, S., Schumann, D., & Schmauder, H. P. (1994). International Journal of Biological Macromolecules, 16, 343–347.

    Article  CAS  Google Scholar 

  54. Schmauder, H. P., Einfeldt, L., Geyer, U., & Klemm, D. (1992). Biosynthesis of cellulose by Acetobacter xylinum using glucose and modified carbon sources. Medicine Faculty Landbouww University Gent, 57/4a, 1797–1799.

    Google Scholar 

  55. Ng, C. C., Sheu, F., Wang, C. L., & Shyu, Y. T. (2000). Journal of Food Sciences, 65, 2–7.

    Article  Google Scholar 

  56. Kim, S. Y., Kim, J. N., Wee, Y. J., Park, D. H., & Ryu, H. W. (2006). Applied Biochemistry and Biotechnology, 131, 705–715.

    Article  Google Scholar 

  57. Wee, Y., Kim, S., Yoon, S., & Ryn, H. (2011). African Journal of Biotechnology, 10, 16267–162276.

    CAS  Google Scholar 

  58. Suwannapinunt, N., Burakorn, J., & Thaenthanee, S. (2007). Suranaree Journal Particulate Science and Technology, 14(4), 357–365.

    Google Scholar 

  59. Hu, Y., & Catchmark, J. M. (2010). Biomacromolecules, 11, 1727–1734.

    Article  CAS  Google Scholar 

  60. Yamanaka, S. (1988). Cellulose utilization: research and rewards in cellulose. London: Elsevier. 175.

    Google Scholar 

  61. Wonga, S. S., Kasapis, S., & Tan, Y. M. (2009). Carbohydrate Polymers, 77, 280–287.

    Article  Google Scholar 

  62. Hutchens, S. A., Leon, R. V., O’Neill, H. M., & Evans, B. R. (2007). Letters in Applied Microbiology, 44, 175–180.

    Article  CAS  Google Scholar 

  63. Jung, J. Y., Khan, T., Park, J. K., & Chang, H. N. (2007). Korean Journal Chemical Engineer, 24, 265–271.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research fellowship to Bhavna Mohite from University Grants Commission, New Delhi under the Research Fellowship in Sciences for meritorious students’ scheme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohite, B.V., Salunke, B.K. & Patil, S.V. Enhanced Production of Bacterial Cellulose by Using Gluconacetobacter hansenii NCIM 2529 Strain Under Shaking Conditions. Appl Biochem Biotechnol 169, 1497–1511 (2013). https://doi.org/10.1007/s12010-013-0092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0092-7

Keywords

Navigation