Skip to main content
Log in

Purification, Characterization, and Specificity Determination of a New Serine Protease Secreted by Penicillium waksmanii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this work was to purify a protease from Penicillium waksmanii and to determine its biochemical characteristics and specificity. The extracellular protease isolated that was produced by P. waksmanii is a serine protease that is essential for the reproduction and growth of the fungus. The protease isolated showed 32 kDa, and has optimal activity at pH 8.0 and 35 °C towards the substrate Abz-KLRSSKQ-EDDnp. The protease is active in the presence of CaCl2, KCl, and BaCl, and partially inhibited by CuCl2, CoCl2 and totally inhibited by AlCl3 and LiCl. In the presence of 1 M urea, the protease remains 50 % active. The activity of the protease increases 60 % when it is exposed to 0.4 % nonionic surfactant-Triton X-100 and loses 10 % activity in the presence of 0.4 % Tween-80. Using fluorescence resonance energy transfer analysis, the protease showed the most specificity for the peptide Abz-KIRSSKQ-EDDnp with k cat/K m of 10,666 mM−1 s−1, followed by the peptide Abz-GLRSSKQ-EDDnp with a k cat/K m of 7,500 mM−1 s−1. Basic and acidic side chain-containing amino acids performed best at subsite S1. Subsites S2, S3, S 2, and S 1, S 3 showed a preference for binding for amino acids with hydrophobic and basic amino acid side chain, respectively. High values of k cat/K m were observed for the subsites S2, S3, and S 2. The sequence of the N-terminus (ANVVQSNVPSWGLARLSSKKTGTTDYTYD) showed high similarity to the fungi Penicillium citrinum and Penicillium chrysogenum, with 89 % of identity at the amino acid level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  2. Diamond, S. L. (2007). Current Opinion in Chemical Biology, 11, 46–51.

    Article  CAS  Google Scholar 

  3. Kumar, C. G., & Takagi, H. (1999). Biotechnology Advances, 17, 561–594.

    Article  CAS  Google Scholar 

  4. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  5. Joo, H. S., Chang, C. S., & Kumar, C. G. (2003). Journal of Applied Microbiology, 95, 267–272.

    Article  CAS  Google Scholar 

  6. Wang, S. L., Yang, C. H., Liang, T. W., & Yen, Y. H. (2008). Bioresource Technology, 99, 3700–3707.

    Article  CAS  Google Scholar 

  7. Djamel, C., Ali, T., & Nelly, C. (2009). European Journal of Scientific Research, 25, 469–477.

    Google Scholar 

  8. Doughari, J. H. (2011). African Journal of Biotechnology, 10, 9657–9660.

    CAS  Google Scholar 

  9. Schechter, I., & Berger, A. (1967). Biochemical and Biophysical Research Communications, 27, 157–162.

    Article  CAS  Google Scholar 

  10. Alves, A. C. V., Rogana, E., Barbosa, C. F., & Ferreira-Alves, D. L. (2007). Journal of Biochemical and Biophysical Methods, 70, 471–479.

    Article  CAS  Google Scholar 

  11. Tran, L. H., & Nagano, H. (2002). Journal of Food Science, 67, 1184–1187.

    Article  CAS  Google Scholar 

  12. Sarath, G., De La Motte, R. S., & Wagner, F. W. (1989). In R. J. Beynon & J. S. Bond (Eds.), Proteolytic enzymes: a practical approach, vol.1.; Peptidase assay methods (pp. 25–55). New York: IRL Press, Oxford University Press.

    Google Scholar 

  13. Meyers, S. P., & Ahearn, D. G. (1977). Mycologia, 69, 646–651.

    Article  CAS  Google Scholar 

  14. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  15. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  16. See, Y. S., & Jackowski, G. (1989). In T. E. Creigton (Ed.), Protein structure: a practical approach, vol.1: Estimating molecular weights of polypeptides by SDS gel electrophoresis (pp. 1–21). New York: IRL Press, Oxford University.

    Google Scholar 

  17. Hirata, I. Y., Cezari, M. H. S., Nakaie, C. R., Boschcov, P., Ito, A. S., Juliano, M. A., & Juliano, L. (1994). Letters in Peptide Science, 1, 299–308.

    Article  Google Scholar 

  18. Bersanetti, P. A., Park, H. Y., Bae, K. S., Son, K. H., Shin, D. H., Hirata, I. Y., Juliano, M. A., Carmona, A. K., & Juliano, L. (2005). Enzyme and Microbial Technology, 37, 574–581.

    Article  CAS  Google Scholar 

  19. Leatherbarrow, R. J. (1992) Grafit version 5.0. Staines: Erithacus Software Ltd.

  20. Klemencic, I., Carmona, A. K., Cezari, M. H., Juliano, M. A., Juliano, L., Guncar, G., Turk, D., Krizaj, I., Turk, V., & Turk, B. (2000). European Journal of Biochemistry, 267, 5404–5412.

    Article  CAS  Google Scholar 

  21. Dunn, B. M. (1989). In R. J. Beynon & J. S. Bond (Eds.), Proteolytic enzymes, vol.1: A practical approach: determination of protease mechanism (pp. 57–81). New York: IRL Press, Oxford University Press.

    Google Scholar 

  22. Edman, P. A. (1949). Archives of Biochemistry and Biophysics, 22, 475.

    CAS  Google Scholar 

  23. Fretweel, J. F., Ismail, S. M. K., Cummings, J. M., & Selby, T. L. (2008). Molecular BioSystems, 4, 862–870.

    Article  Google Scholar 

  24. Reichard, U., Büttner, S., Eiffert, H., Staib, F., & Rüchel, R. (1990). Journal of Medical Microbiology, 33, 243–251.

    Article  CAS  Google Scholar 

  25. Monod, M., Togni, G., Rahalison, L., & Frenk, E. (1991). Journal of Medical Microbiology, 35, 23–28.

    Article  CAS  Google Scholar 

  26. Larcher, G., Bouchara, J. P., Annaix, V., Symoens, F., Chabasse, D., & Tronchin, G. (1992). FEBS Letters, 308, 65–69.

    Article  CAS  Google Scholar 

  27. Tunga, R., Shrivastava, B., & Banerjee, R. (2003). Process Biochemistry, 38, 1553–1558.

    Article  CAS  Google Scholar 

  28. Tremacoldi, C. R., Monti, R., Selistre-De-Araújo, H. S., & Carmona, E. C. (2007). World Journal of Microbiology and Biotechnology, 23, 295–299.

    Article  CAS  Google Scholar 

  29. Hajji, M., Kanoun, S., Nasri, M., & Gharsallah, N. (2007). Process Biochemistry, 42, 791–797.

    Article  CAS  Google Scholar 

  30. Peña-Montes, C., González, A., Castro-Ochoa, D., & Farrés, A. (2008). Applied Microbiology and Biotechnology, 78, 603–612.

    Article  Google Scholar 

  31. Rocco, A. G., Mollica, L., Ricchiuto, P., Baptista, A. M., Gianazza, E., & Eberini, I. (2008). Biophysical Journal, 94, 2241–2251.

    Article  CAS  Google Scholar 

  32. Merheb-Dini, C., Cabral, H., Leite, R. S. R., Zanphorlin, L. M., Okamoto, D. N., Rodriguez, G. O. B., Juliano, L., Arantes, E. C., Gomes, E., & Da Silva, R. (2009). Journal of Agricultural and Food Chemistry, 57, 9210–9217.

    Article  CAS  Google Scholar 

  33. Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Bioresource Technology, 100, 3366–3373.

    Article  CAS  Google Scholar 

  34. Sampaio e Silva, T. A., Knob, A., Tremacoldi, C. R., Brochetto-Braga, M. R., & Carmona, E. C. (2011). World Journal of Microbiology and Biotechnology, 27, 2491–2497.

    Article  CAS  Google Scholar 

  35. Zanphorlin, L. M., Cabral, H., Arantes, E., Assis, D., Juliano, L., Juliano, M. A., Da-Silva, R., Gomes, E., & Bonilla-Rodriguez, G. O. (2011). Process Biochemistry, 46, 2137–2143.

    Article  CAS  Google Scholar 

  36. Honorata, C., & Jacek, O. (1999). European Journal of Biochemistry, 260, 571–595.

    Article  Google Scholar 

  37. Yamamoto, N., Matsumoto, K., Yamagata, Y., Hirano, K., & Ichishima, E. (1999). Phytochemistry, 32, 1393–1397.

    Article  Google Scholar 

  38. van den Berg, M. A., Albang, R., Albermann, K., Badger, J. H., Daran, J. M., Driessen, A. J., Garcia-Estrada, C., Fedorova, N. D., Harris, D. M., Heijne, W. H., Joardar, V., Kiel, J. A., Kovalchuk, A., Martin, J. F., Nierman, W. C., Nijland, J. G., Pronk, J. T., Roubos, J. A., van der Klei, I. J., van Peij, N. N., Veenhuis, M., von Dohren, H., Wagner, C., Wortman, J., & Bovenberg, R. A. (2008). Nature Biotechnology, 26, 1161–1168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Brazilian National Council for Research and Development (CNPq) and Sao Paulo Research Foundation (FAPESP) Sao Paulo, Brazil. All authors have agreed to submit this manuscript to the “Applied Biochemistry and Biotechnology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamilton Cabral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graminho, E.R., da Silva, R.R., de Freitas Cabral, T.P. et al. Purification, Characterization, and Specificity Determination of a New Serine Protease Secreted by Penicillium waksmanii . Appl Biochem Biotechnol 169, 201–214 (2013). https://doi.org/10.1007/s12010-012-9974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9974-3

Keywords

Navigation