Skip to main content
Log in

Formation Kinetics of Potential Fermentation Inhibitors in a Steam Explosion Process of Corn Straw

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The weak acids, furan derivatives, and phenolic compounds formed during lignocellulose pretreatment are potential inhibitors of subsequent enzymatic and microbial processes. In this work, the effects of the steam explosion process on the formation of weak acids, furan derivatives, and phenolic compounds were explored. The correlations of different steam explosion conditions and formation kinetics of degradation products showed that the formation of weak acids and furan derivatives was in the first-order reactions, which are expressed as \( A\times {e^{{{{{-{E_a}}} \left/ {RT } \right.}}}}\cdot t \). The formation of weak acids and furan derivatives increases with pretreatment temperature and time. On the other hand, the formation of phenolic compounds showed typical characteristics of continuous reaction, expressed as \( {{{{A_1}\times {e^{{{{{-{E_{a1 }}}} \left/ {RT } \right.}}}}}} \left/ {{{A_2}\times {e^{{{{{-{E_{a2 }}}} \left/ {RT } \right.}}}}\cdot t}} \right.} \). The formation was affected by the active energies in two stages, temperature and time, and thus existed at extreme value. This work revealed the formation rules of weak acids, furan derivatives, and phenolic compounds in a steam explosion process and provided theoretical guidelines for improving the process and limiting the production of certain inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim, T. H., Lee, Y. Y., Sunwoo, C., & Kim, J. S. (2006). Applied Biochemistry and Biotechnology, 133, 41–57.

    Article  CAS  Google Scholar 

  2. Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I., & Kim, K. H. (2009). Bioresource Technology, 100, 1285–1290.

    Article  CAS  Google Scholar 

  3. Zhang, Y. Z., & Chen, H. Z. (2012). Chemical Engineering Science, 75, 177–182.

    Article  CAS  Google Scholar 

  4. Chen, H. Z., & Liu, L. Y. (2007). Bioresource Technology, 98, 666–676.

    Article  Google Scholar 

  5. Sun, F. B., & Chen, H. Z. (2008). Journal of Chemical Technology and Biotechnology, 83, 707–714.

    Article  CAS  Google Scholar 

  6. Cara, C., Moya, M., Ballesteros, I., Negro, M. J., González, A., & Ruiz, E. (2007). Process Biochemistry, 42, 1003–1009.

    Article  CAS  Google Scholar 

  7. Vancova, T., & McIntosha, S. (2011). Journal of Chemical Technology and Biotechnology, 86, 818–825.

    Article  Google Scholar 

  8. Hu, Z. H., & Wen, Z. Y. (2008). Biochemical Engineering Journal, 38, 369–378.

    Article  CAS  Google Scholar 

  9. Peng, X. W., & Chen, H. Z. (2012). Process Biochemistry, 47, 209–215.

    Article  CAS  Google Scholar 

  10. Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Bioresource Technology, 101, 4744–4753.

    Article  CAS  Google Scholar 

  11. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  12. Saddler, J., Ramos, L., & Breuil, C. (1993). In J. Saddler (Ed.), Bioconversion of Forest and Agricultural Plant Residues (pp. 73–73). UK: C.B.A. International.

    Google Scholar 

  13. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  14. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  15. Emmel, A., Mathias, A. L., Wypych, F., & Ramos, L. P. (2003). Bioresource Technology, 86, 105–115.

    Article  CAS  Google Scholar 

  16. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Process Biochemistry, 39, 1533–1542.

    Article  CAS  Google Scholar 

  17. García-Aparicio, M. A. P., Ballesteros, I., González, A., Oliva, J. M., Ballesteros, M., & Negro, M. A. J. (2006). Applied Biochemistry and Biotechnology, 129–132, 278–288.

    Article  Google Scholar 

  18. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  19. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., & Zacchi, G. (1996). Enzyme and Microbial Technology, 19, 470–476.

    Article  CAS  Google Scholar 

  20. Luo, C., Brink, D. L., & Blanch, H. W. (2002). Biomass and Bioenergy, 22, 125–138.

    Article  CAS  Google Scholar 

  21. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Biotechnology Progress, 17, 287–293.

    Article  CAS  Google Scholar 

  22. Oliva, J. M., Sáez, F., Ballesteros, I., Gonzalez, A., Negro, M. J., Manzanares, P., & Ballesteros, M. (2003). Applied Biochemistry and Biotechnology, 105, 141–153.

    Article  Google Scholar 

  23. Fenske, J. J., Griffin, D. A., & Penner, M. H. (1998). Journal of Industrial Microbiology and Biotechnology, 20, 364–368.

    Article  CAS  Google Scholar 

  24. Du, B., Sharma, L. N., Becker, C., Chen, S. F., Mowery, R. A., van Walsum, G. P., & Chambliss, C. K. (2010). Biotechnology and Bioengineering, 107, 430–440.

    Article  CAS  Google Scholar 

  25. Xiao, L., Xu, F., & Sun, R. C. (2011). Fibers and Polymers, 12, 316–323.

    Article  CAS  Google Scholar 

  26. Laopaiboon, P., Thani, A., Leelavatcharamas, V., & Laopaiboon, L. (2010). Bioresource Technology, 101, 1036–1041.

    Article  CAS  Google Scholar 

  27. Sun, F., & Chen, H. Z. (2008). Bioresource Technology, 99, 5474–5479.

    Article  CAS  Google Scholar 

  28. Li, J., & Gellerstedt, G. (2008). Industrial Crops and Products, 27, 175–181.

    Article  CAS  Google Scholar 

  29. Kobayashi, T., Kohn, B., Holmes, L., Faulkner, R., Davis, M., & Maciel, G. E. (2011). Energy & Fuels, 25, 1790–1797.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Project, no. 2011CB707401), the National High Technology Research and Development Program of China (863 Program, SS2012AA022502), and the National Key Project of Scientific and Technical Supporting Program of China (no. 2011BAD22B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, L. & Chen, H. Formation Kinetics of Potential Fermentation Inhibitors in a Steam Explosion Process of Corn Straw. Appl Biochem Biotechnol 169, 359–367 (2013). https://doi.org/10.1007/s12010-012-9961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9961-8

Keywords

Navigation