Skip to main content
Log in

Effect of Dissolved Oxygen Tension and Agitation Rates on Sulfur-Utilizing Autotrophic Denitrification: Batch Tests

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of dissolved oxygen (DO) and agitation rate in open and closed reactors was examined for sulfur-utilizing autotrophic denitrification. The reaction rate constants were determined based on a half-order kinetic model. Declining denitrification rate constants obtained for open reactors those of 8.46, 8.03, and 2.18 for 50 mg NO3 -N/L, while 11.12, 9.14, and 0.12 mg1/2/L1/2 h were for 100 mg NO3 -N/L at agitation speeds of 0, 100, and 200 rpm. In closed reactors, the ever-increasing denitrification rates were 10.13, 22.56, and 37.03, whereas for the same nitrate concentrations and speeds the rates were 13.17, 15.63, and 26.67 mg1/2/L1/2 h. The rate constants correlated well (r 2 = 0.89–0.99) with a half-order kinetic model. In open reactors, high SO4 2−/N ratios (8.02–75.10) while in closed reactors comparatively low SO4 2−/N ratios (6.10–13.39) were obtained. Sulfur oxidation occurred continuously in the presence of DO, resulting in mixed cultures acclimated to sulfur and nitrate. SO4 2− was produced as an end product, which reduced alkalinity and lowered pH over time. Furthermore, DO inhibited sulfur denitrification in open reactors, while agitation in closed reactors increased the rate of denitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moon, H. S., Chang, S. W., Nam, K., Choe, J., & Kim, J. Y. (2006). Environmental Pollution, 144, 802–807.

    Article  CAS  Google Scholar 

  2. Stelzer, R. S., & Joachim, B. L. (2010). Archives of Environmental Contamination and Toxicology, 58, 694–699.

    Article  CAS  Google Scholar 

  3. Liu, H., Jiang, W., Wan, D., & Qu, J. (2009). Journal of Hazardous Materials, 169, 23–28.

    Article  CAS  Google Scholar 

  4. US EPA. (2008). Integrated Science Assessment (ISA) for oxides of nitrogen and sulfur environmental criteria (second external review draft). Washington, DC: U.S. Environmental Protection Agency.

  5. Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E., & Field, J. A. (2007). Water Research, 41, 1253–1262.

    Article  CAS  Google Scholar 

  6. Batchelor, B., & Lawrence, A. W. (1978). Journal of the Water Pollution Control Federation, 50, 1986–2001.

    CAS  Google Scholar 

  7. Driscoll, C. T., & Bisogni, J. J. (1978). Journal of the Water Pollution Control Federation, 50, 569–577.

    CAS  Google Scholar 

  8. Oh, S. E., Yoo, Y. B., Young, J. C., & Kim, I. S. (2001). Journal of Biotechnology, 92, 1–8.

    Article  CAS  Google Scholar 

  9. Liu, L. H., & Koenig, A. (2002). Process Biochemistry, 37, 885–893.

    Article  CAS  Google Scholar 

  10. Betlach, M. R., & Tiedje, J. M. (1981). Applied Environment Microbiology, 42, 1074–1084.

    CAS  Google Scholar 

  11. Oh, S. E., Hassan, S. H. A., & Van Ginkel, S. W. (2010). Sensors and Actuators B: Chemical, 154, 17–21.

    Article  Google Scholar 

  12. Oh, J., & Silverstein, J. (1999). Journal of Environmental Engineering, 125, 234–242.

    Article  CAS  Google Scholar 

  13. Niel, E. W. J., Braber, K. J., Robertson, L. A., & Kuenen, J. G. (1992). Antonie Van Leeuwenhoek, 62, 231–237.

    Article  Google Scholar 

  14. Davies, K. J. P., Lloyd, D., & Boddy, L. (1989). Journal of General Microbiology, 135, 2445–2451.

    CAS  Google Scholar 

  15. Moir, J., Richardson, D., & Ferguson, S. (1995). Archives of Microbiology, 164, 43–49.

    Article  CAS  Google Scholar 

  16. Oh, S. E., Bum, M. S., Yoo, Y. B., Zubair, A., & Kim, I. S. (2003). Water Science and Technology, 47, 237–244.

    CAS  Google Scholar 

  17. Clesceri, L. S., Eaton, A. D., Greenberg, A. E., & Franson, M. A. H. (1996). A. American public health, A. American water works, F. Water environment, standard methods for the examination of water and wastewater: 19th edition supplement. Washington, DC: American Public Health Association.

    Google Scholar 

  18. Claus, G., & Kutzner, H. J. (1985). Applied Microbiology and Biotechnology, 22, 283–288.

    CAS  Google Scholar 

  19. Koenig, A., & Liu, L. H. (2001). Water Research, 35, 1969–1978.

    Article  CAS  Google Scholar 

  20. Darbi, A., & Viraraghavan, T. (2003). Water Quality Research Journal of Canada, 38, 183–192.

    CAS  Google Scholar 

  21. Koenig, A., & Liu, L. H. (2002). Journal of Biotechnology, 99, 161–171.

    Article  CAS  Google Scholar 

  22. Moon, H. S., Nam, K., & Kim, J. Y. (2006). Journal of Environmental Engineering, 132, 971–975.

    Article  CAS  Google Scholar 

  23. Gomez, M. A., Hontoria, E., & Gonzalez-Lopez, J. (2002). Journal of Hazardous Materials, 90, 267–278.

    Article  CAS  Google Scholar 

  24. Traveres, A. S. P. P., Moura, J. J. G., & Moura, I. (2006). Journal of Inorganic Biochemistry, 100, 2087–2100.

    Article  Google Scholar 

  25. Sikora, L. J., & Keeney, D. R. (1976). Journal of Environmental Quality, 5, 298–303.

    Article  CAS  Google Scholar 

  26. Moon, H. S., Ahn, K. H., Lee, S., Nam, K., & Kim, J. Y. (2004). Environmental Pollution, 129, 499–507.

    Article  CAS  Google Scholar 

  27. Schippers, J. C., Kruithof, J. C., Mulder, F. G., & van Lieshout, J. W. (1987). Aqua (Oxford), 5, 274–280.

    Google Scholar 

  28. Sahinkaya, E. (2009). International Biodeterioration and Biodegradation, 63, 245–251.

    Article  CAS  Google Scholar 

  29. Bak, F., & Cypionka, H. (1987). Nature, 326, 891–892.

    Article  CAS  Google Scholar 

  30. Moon, H. S., Shin, D. Y., Nam, K., & Kim, J. Y. (2008). Chemosphere, 73, 723–728.

    Article  CAS  Google Scholar 

  31. A. Koenig, L.H. Liu, (1996) 469–476.

  32. Zhang, T. C., & Shan, J. (1999). Water Environment Research, 71, 1283–1291.

    Article  CAS  Google Scholar 

  33. Zhang, T. C., & Lampe, D. G. (1999). Water Research, 33, 599–608.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Institute of Environmental Research at Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Eun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qambrani, N.A., Oh, SE. Effect of Dissolved Oxygen Tension and Agitation Rates on Sulfur-Utilizing Autotrophic Denitrification: Batch Tests. Appl Biochem Biotechnol 169, 181–191 (2013). https://doi.org/10.1007/s12010-012-9955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9955-6

Keywords

Navigation