Skip to main content
Log in

Genotypic Variability Among Soybean Genotypes Under NaCl Stress and Proteome Analysis of Salt-Tolerant Genotype

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present investigation was conducted to evaluate salt tolerance in ten genotypes of soybean (Glycine max L.). Twelve-day-old seedlings, grown hydroponically, were treated with 0, 25, 50, 75, 100, 125 and 150 mM NaCl for 10 days. Growth, lipid peroxidation and antioxidant enzyme activities were evaluated. Growth, measured in terms of length, fresh weight and dry weight of plants, was drastically reduced in Pusa-24 while there was little effect of NaCl treatment on Pusa-37 genotype of soybean. High level of lipid peroxidation was observed in Pusa-24 as indicated by increased level of malondialdehyde. Activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were maximum in Pusa-37 where 9-, 1-, 5- and 6-fold increase over control were observed, respectively. The results suggested that Pusa-24 and Pusa-37 are salt-sensitive and salt-tolerant genotype of soybean, respectively, and antioxidant defence system is involved in conferring the sensitiveness and tolerance in these genotypes. Salt-tolerant genotype Pusa-37, was further analysed by 2-dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the present study, 173 protein spots were identified. Of these, 40 proteins were responsive to salinity in that they were either up- or downregulated. This study could help us in identifying the possible regulatory switches (gene/s) controlling novel proteins of the salt-tolerant genotype of the crop plants and their possible role in defence mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

BSA:

Bovine serum albumin

CAT:

Catalase

DW:

Dry weight

EDTA:

Ethylenediaminetetraacetic

FW:

Fresh weight

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidised glutathione

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

MALDI-TOF-MS:

Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry

References

  1. FAO. (2005). Global network on integrated soil management for sustainable use of salt-affected soils. Rome: FAO land and plant nutrition management service.

    Google Scholar 

  2. Nemoto, Y., & Sasakuma, T. (2002). Differential stress responses of early salt-stress responding genes in common wheat. Phytochemistry, 61, 129–133.

    Article  CAS  Google Scholar 

  3. Locy, R. D., Chang, C. C., Nielsen, B. L. & Singh, N. K. (1996). Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiology, 110, 321–328.

    CAS  Google Scholar 

  4. Singh, R. K., Ghosh, P. K., Bandyopadhyay, K. K., Misra, A. K., Mandal, K.G. & Hati, K. M. (2006). Integrated plant nutrient supply for sustainable production in soybean – based cropping system. Indian Journal of Fertilizers 1(11), 25–32.

    Google Scholar 

  5. Hoagland, D. R., & Arnon, D. S. (1950). The water culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1–32.

    Google Scholar 

  6. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts I. Kinetic and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  7. Bates, L. S., Walden, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  8. Beauchamp, C. O., & Fridovich, I. (1971). Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  9. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutase. I. Occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  10. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  11. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  12. Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21–25.

    Article  Google Scholar 

  13. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  14. Damerval, C., Vienne, D. D., Zivy, M. & Thiellement, H. (1986). Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis, 7, 52–54.

    Article  CAS  Google Scholar 

  15. O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250, 4007–4021.

    Google Scholar 

  16. Chivasa, S., Ndimba, B. K., Simon, W. J., Robertson, D., Yu, X. L., Knox, J. P., Bolwell, P. & Slabas, A. R. (2002). Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis, 23, 1754–1765.

    Article  CAS  Google Scholar 

  17. Laemilli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680–685.

    Google Scholar 

  18. FAO (2000). Global network on integrated soil management for sustainable use of salt affected soils. Available from: http://www.fao.org/ag/AGL/agll/spush/intro.htm.

  19. Munns, R. (2000). Comparative physiology of salt and water stress. Plant Cell and Environment, 25, 239–250.

    Article  Google Scholar 

  20. Ruiz, J. M., Blasco, B., Rivero, R. M., & Romero, L. (2005). Nicotine-free and salt tolerant tobacco plants obtained by grafting to salinity-resistant root stocks of tomato. Physiologia Plantarum, 124, 465–475.

    Article  CAS  Google Scholar 

  21. Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non-halophytes. Annual Reviews of Plant Physiology, 31, 149–190.

    Article  CAS  Google Scholar 

  22. Gomez, J. M., Hernendez, J. A., Jimenez, A., del Rio, L. A., & Sevilla, F. (1999). Differential response of antioxidative enzymes of chloroplasts and mitochondria to long term NaCl stress of pea plants. Free Radical Research, 31, S11–S18.

    Article  CAS  Google Scholar 

  23. Hernandez, J. A., Jimenez, A., Mullineaux, P., & Sevilla, F. (2000). Tolerance of pea (Pisum sativum L.) to a long term salt stress is associated with induction of antioxidant defences. Plant Cell and Environment, 23, 853–862.

    Article  CAS  Google Scholar 

  24. Demiral, T., & Turkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53, 247–257.

    Article  CAS  Google Scholar 

  25. Khan, M. H., Singh, L. B., & Panda, S. K. (2002). Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress. Acta Physiologia Plant, 24, 145–148.

    Article  CAS  Google Scholar 

  26. Mandhania, S., Madan, S., & Sawhney, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 227, 227–231.

    Article  Google Scholar 

  27. Panda, S. K., & Khan, M. H. (2003). Salt stress influences lipid peroxidation and antioxidants in the leaf of an indica rice (Oryza sativa L). Physiology and Molecular Biology of Plants, 9, 273–278.

    Google Scholar 

  28. Panda, S. K., & Upadhyay, R. K. (2003). Salt stress injury induces oxidative alteration and antioxidative defense in the roots of Lemna minor. Biologia Plantarum, 48, 249–253.

    Article  Google Scholar 

  29. Jain, M., Mathur, G., Koul, S., & Sarin, N. B. (2001). Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 20, 463–468.

    Article  CAS  Google Scholar 

  30. Fadzilla, N. M., Finch, R. P., & Burdon, R. H. (1997). Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. Journal of Experimental Botany, 48, 325–331.

    Article  CAS  Google Scholar 

  31. Sairam, R. K., Srivastava, G. C., Agarwal, S., & Meena, R. C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biolgia Plantarum, 49, 85–91.

    Article  CAS  Google Scholar 

  32. Willekens, H., Inze, D., Van Montagu, M., & Van Camp, W. (1995). Catalase in plants. Molecular Breeding, 1, 207–228.

    Article  CAS  Google Scholar 

  33. Neto, A. D. A., Prisco, J. T., Eneás-Filho, J., Abreu, C. E. B., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56, 87–94.

    Article  Google Scholar 

  34. Comba, M. E., Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (1998). Relationship between nitrogen fixation and oxidative stress induction in nodules of salt treated soybean plants. Phyton-International Journal of Experimental Botany, 60, 115–126.

    Google Scholar 

  35. Bueno, P., Piqueras, A., Kurepa, J., Savoure, A., Verbruggen, N., Montagu, V. M., et al. (1998). Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Science, 138, 27–34.

    Article  CAS  Google Scholar 

  36. Lechno, S., Zamski, E., & Tel-Or, E. (1997). Salt stress-induce responses in cucumber plants. Journal of Plant Physiology, 150, 206–211.

    Article  CAS  Google Scholar 

  37. Sudhakar, C., Lakshmi, A., & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161, 613–619.

    Article  CAS  Google Scholar 

  38. Asada, K. (1999). The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annual Reviews of Plant Physiology and Plant Molecular Biology, 50, 601–639.

    Article  CAS  Google Scholar 

  39. Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B. A., & Ben-Hayyim, G. (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta, 203, 460–469.

    Article  CAS  Google Scholar 

  40. Bor, M., Özdemir, F., & Türkan, I. (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science, 164, 77–84.

    Article  CAS  Google Scholar 

  41. Mittova, V., Volokita, M., Guy, M., & Tal, M. (2000). Activities of SOD and the ascorbate–glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennilli. Physiologia Plantarum, 110, 42–51.

    Article  CAS  Google Scholar 

  42. Asada, K., & Takahashi, M. (1987). Photoinhibition. In D. J. Kyle, C. B. Osmond, & C. J. Arntzen (Eds.), Production and scavenging of active oxygen in photosynthesis (pp. 227–287). Amsterdam: Elsevier.

    Google Scholar 

  43. Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4, 215–223.

    Article  CAS  Google Scholar 

  44. Kavi-Kishor, P. B., Hong, Z., Miao, G. H., Hu, C. A. A., & Verma, D. P. S. (1995). Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiolgy, 108, 1387–1394.

    Google Scholar 

  45. Solomon, A., Beer, S., Waisel, Y., Jones, G. P., & Paleg, L. G. (1994). Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Physiologia Plantarum, 90, 198–204.

    Article  CAS  Google Scholar 

  46. Van Rensburg, L., Kruger, G. H. J., & Kruger, H. (1993). Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. Journal of Plant Physiology, 141, 188–194.

    Article  Google Scholar 

  47. Alia, Prasad, K. V. S. K., & Pardha-Saradhi, P. (1995). Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry, 39, 45–47.

    Article  CAS  Google Scholar 

  48. Venekamp, J. H. (1989). Regulation of cytosol acidity in plants under conditions of drought. Physiologia Plantarum, 70, 381–388.

    Google Scholar 

  49. Hagedorn, C. H., & Phang, J. M. (1986). Catalytic transfer of hydride ions from NADPH to oxygen by the inter conversions of proline and delta1-pyrroline-5-carboxylate. Archives of Biochemistry and Biophysics, 248, 166–174.

    Article  CAS  Google Scholar 

  50. Ali, G., Srivastava, P. S., & Iqbal, M. (1999). Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biologia Plantarum, 42, 89–95.

    Article  CAS  Google Scholar 

  51. Gzik, A. (1996). Accumulation of proline and pattern of amino acids in sugar beet plants in response to osmotic, water and salt stress. Environmental and Experimental Botany, 36, 29–38.

    Article  CAS  Google Scholar 

  52. Petrusa, L., & Winicov, I. (1997). Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiology and Biochemistry, 35, 303–310.

    CAS  Google Scholar 

  53. Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., et al. (1998). Analysis of 1.9Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 391, 485–488.

    Article  CAS  Google Scholar 

  54. Witzel, K., Weidner, A., Surabhi, G. K., Börner, A. & Mock, H. P. (2009). Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. Journal of Experimental Botany, 60, 3545–3557.

    Article  CAS  Google Scholar 

  55. Abbasi, F. M., & Komatsu, S. (2004). A proteomic approach to analyze salt responsive proteins in rice leaf sheath. Proteomics, 4, 2072–2081.

    Article  CAS  Google Scholar 

  56. Yan, S., Tang Z., Su, W. & Sun, W. (2005). Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 5, 235–244

  57. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., et al. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53, 1305–1319.

    Article  CAS  Google Scholar 

  58. Jiang, Y., Yang, B., Harris, N. S. & Deyholos, M. K. (2007). Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 58, 3591–3607.

    Article  CAS  Google Scholar 

  59. Caruso, G., Cavaliere, C., Guarino, C., Gubbiotti, R., Foglia, P. & Laganà, A. (2008). Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Analytical and Bioanalytical Chemistry, 391,381–390.

    Article  CAS  Google Scholar 

  60. Wang, M. C., Peng, Z. Y., Li, C. L., Li, F., Liu, C. & Xia, G. M. (2008). Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics, 8, 1470–1489.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Rehman Hakeem.

Additional information

Khalid Rehman Hakeem, Faheema Khan and Ruby Chandna contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakeem, K.R., Khan, F., Chandna, R. et al. Genotypic Variability Among Soybean Genotypes Under NaCl Stress and Proteome Analysis of Salt-Tolerant Genotype. Appl Biochem Biotechnol 168, 2309–2329 (2012). https://doi.org/10.1007/s12010-012-9939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9939-6

Keywords

Navigation