Skip to main content
Log in

Purification of a Lectin from M. rubra Leaves Using Immobilized Metal Ion Affinity Chromatography and Its Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lectins represent a heterogeneous group of proteins/glycoproteins with unique carbohydrate specificity, with wide range of biomedical applications. The multi-step purification protocols generally used for purification of lectin result in a significant reduction in the final yield and activity. In the present study, Morus rubra lectin (MRL) was purified to homogeneity from the leaves using a single-step immobilized metal ion affinity chromatography (IMAC) procedure. The approximate molecular weight of purified MRL resolved as a single band on SDS-PAGE was 52 kDa. Final percentage yield of purified lectin by IMAC was calculated as 74.7 %. Purified MRL was specific to three sugars, galactose, d-galactosamine and N-acetyl-d-galactosamine, and rendered haemagglutination (HA) activity towards different human blood group RBCs. MRL showed stability over a wide range of temperature (up to 80 °C) and pH (4–11). Chelation of the lectin with EDTA did not alter HA which indicates that metal ion is not required for activity. In the presence of Fe2+, Ca2+, Zn2+, Ni2+, Mn2+, Na+ and K+, HA activity was reduced to 50 %, whereas the presence of trivalent metal ions (Fe3+ and Al3+) and Cu2+ did not affect the activity. In the presence of Mg2+ and Hg2+, only 25 % of HA activity remained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MRL:

Morus rubra lectin

IMAC:

Immobilized metal ion affinity chromatography

References

  1. Goldstein, I. J., & Poretz, R. D. (1986). In I. E. Liener, N. Sharon, & I. J. Goldstein (Eds.), The lectins: properties, functions, and applications in biology and medicine (pp. 33–247). London: Academic.

    Google Scholar 

  2. Wang, H. X., Liu, W. K., Ng, T. B., Ooi, V. E. C., & Chang, S. T. (1996). The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology, 31, 205–211.

    Article  CAS  Google Scholar 

  3. Li, W. W., Yu, J. Y., Xu, H. L., & Bao, J. K. (2011). Concanavalin A: a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics. Biochemical and Biophysical Research Communications, 414, 282–286.

    Article  CAS  Google Scholar 

  4. Li, C., & Lubman, D. M. (2011). Analysis of serum protein glycosylation with antibody-lectin microarray for high-throughput biomarker screening. Methods in Molecular Biology, 723, 15–28.

    Article  CAS  Google Scholar 

  5. Gabius, H. J. (1987). Endogenous lectins in tumors and the immune system. Cancer Investigation, 5, 39–46.

    Article  CAS  Google Scholar 

  6. Bird-Lieberman, E. L., Neves, A. A., Lao-Sirieix, P., O’Donovan, M., Novelli, M., Lovat, L. B., et al. (2012). Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nature Medicine, 18, 315–321.

    Article  CAS  Google Scholar 

  7. Kimura, T., Nakagawa, K., Kubota, H., Kojima, Y., Goto, Y., Yamagishi, K., et al. (2007). Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. Journal of Agriculture and Food Chemistry, 55, 5869–5874.

    Article  CAS  Google Scholar 

  8. Kikuchi, T., Nihei, M., Nagai, H., Fukushi, H., Tabata, K., Suzuki, T., et al. (2010). Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chemical and Pharmaceutical Bullettin, 58, 568–571.

    Article  CAS  Google Scholar 

  9. Yeasmin, T. M., Tang, M. A., Razzaque, A., & Absar, N. (2001). Purification and characterization of three galactose specific lectins from mulberry seeds (Morus sp.). European Journal of Biochemistry, 268, 6005–6010.

    Article  CAS  Google Scholar 

  10. Ratanapo, S., Ngamjunyaporn, W., & Chulavatnatol, M. (1998). Sialic acid binding lectins from leaf of mulberry (Morus alba). Plant Science, 139, 141–148.

    Article  CAS  Google Scholar 

  11. Van Damme, E. J. M., Peumans, W. J., Pusztai, A., & Bardocz, S. (1998). Handbook of plant lectins: properties and biomedical applications. New York: Wiley.

    Google Scholar 

  12. Liu, X. Q., Wu, H., Yu, H. L., Zhao, T. F., Pan, Y. Z., & Shi, R. J. (2011). Purification of a lectin from Arisaema erubescens (Wall.) Schott and its pro-inflammatory effects. Molecules, 16, 9480–9494.

    Article  CAS  Google Scholar 

  13. Porath, J., Carlsson, J., Olsson, I., & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 258, 598–599.

    Article  CAS  Google Scholar 

  14. Vancan, S., Miranda, E. A., & Bueno, S. M. A. (2002). IMAC of human IgG: studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Process Biochemistry, 37, 573–576.

    Article  CAS  Google Scholar 

  15. Porath, J., & Olin, B. (1983). Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry, 22, 1621–1630.

    Article  CAS  Google Scholar 

  16. Ueda, E. K. M., Gout, P. W., & Morganti, L. (2003). Current and prospective applications of metal ion–protein binding. Journal of Chromatography. A, 988, 1–23.

    Article  CAS  Google Scholar 

  17. Dong, X. Y., Chen, L. J., & Sun, Y. (2009). Refolding and purification of histidine-tagged protein by artificial chaperone-assisted metal affinity chromatography. Journal of Chromatography. A, 1216, 5207–5213.

    Article  CAS  Google Scholar 

  18. Sushma, K., Vijayalakshmi, M. A., Krishnan, V., & Satheeshkumar, P. K. (2011). Cloning, expression, purification and characterization of a single chain variable fragment specific to tumor necrosis factor alpha in Escherichia coli. Journal of Biotechnology, 156, 238–244.

    Article  CAS  Google Scholar 

  19. She, Y., Narindrasorasak, S., Yang, S., Spitale, N., Roberts, E. A., & Sarkar, B. (2003). Identification of metal-binding proteins in human hepatoma lines by immobilized metal affinity chromatography and mass spectrometry. Molecular & Cellular Proteomics, 2, 1306–1318.

    Article  CAS  Google Scholar 

  20. Mehle, A., Thomas, E. R., Rajendran, K. S., & Gabuzda, D. (2006). A zinc-binding region in Vif binds Cul5 and determines cullin selection. The Journal of Biological Chemistry, 281, 17259–17265.

    Article  CAS  Google Scholar 

  21. Deepa, M., & Priya, S. (2012). Purification and characterization of a novel anti-proliferative lectin from Morus alba L. leaves. Protein and Peptide Letters, 19, 839–845.

    Article  CAS  Google Scholar 

  22. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 277, 680–685.

    Article  Google Scholar 

  23. Goldberg, H. A., & Warner, K. J. (1997). The staining of acidic proteins on polyacrylamide gels: enhanced sensitivity and stability of “stains-all” staining in combination with silver nitrate. Analytical Biochemistry, 251, 227–233.

    Article  CAS  Google Scholar 

  24. Murali, S., Mullainadhan, P., & Arumugam, M. (1999). Purification and characterization of a natural agglutinin from the serum of the hermit crab Diogenes affinis. Biochemical and Biophysical Acta, 1472, 13–24.

    Article  CAS  Google Scholar 

  25. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  26. Dubois, M., Gilles, D. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  27. Doerner, K. C., & White, B. A. (1990). Detection of glycoproteins separated by nondenaturing polyacrylamide gel electrophoresis using the periodic acid-Schiff stain. Analytical Biochemistry, 187, 147–150.

    Article  CAS  Google Scholar 

  28. Paulova, M., Entlicher, G., Ticha, M., Kostir, J. V., & Kocourek, J. (1971). Studies of phytohemagglutinins. VII. Effect of Mn2+ and Ca2+ on hemagglutinin of phytohemagglutinin of Pisum sativum L. Biochemical and Biophysical Acta, 237, 513–518.

    Article  CAS  Google Scholar 

  29. Everson, R. J., & Parker, H. E. (1974). Zinc binding and synthesis of eight-hydroxy-quinoline-agarose. Bioinorganic Chemistry, 4, 15–20.

    Article  CAS  Google Scholar 

  30. Sulkowski, E. (1985). Purification of proteins by IMAC. Trends in Biotechnology, 3, 1–7.

    Article  CAS  Google Scholar 

  31. Sharon, N., & Lis, H. (1989). Lectins. London: Chapman and Hall.

    Book  Google Scholar 

  32. Brooks, A. S., & Carter, M. T. (2001). N-acetylgalactosamine, N-acetylglucosamine and sialic acid expression in primary breast cancers. Acta Histochemica, 103, 37–51.

    Article  CAS  Google Scholar 

  33. Lyu, S. Y., Choi, S. H., & Park, W. B. (2002). Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells is associated with inhibition of telomerase via mitochondrial controlled pathway independent of p53. Archives in Pharmaceutical Research, 25, 93–101.

    Article  CAS  Google Scholar 

  34. Dhuna, V., Bains, J. S., Kamboj, S. S., Singh, J., Kamboj, S., & Saxena, A. K. (2005). Purification and characterization of a lectin from Arisaema tortuosum Schott having in-vitro anticancer activity against human cancer cell lines. Journal of Biochemistry and Molecular Biology, 38, 526–532.

    Article  CAS  Google Scholar 

  35. Shangary, S., Singh, J., Kamboj, S. S., Kamboj, K. K., & Sandhu, R. S. (1995). Purification and properties of four monocot lectins from the family Araceae. Phytochemistry, 40, 449–455.

    Article  CAS  Google Scholar 

  36. Kawagishi, H., Nomura, A., Mizuno, T., Kimura, A., & Chiba, S. (1990). Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochemical and Biophysical Acta, 1034, 247–252.

    Article  CAS  Google Scholar 

  37. Han, C. H., Liu, Q. H., Ng, T. B., & Wang, H. X. (2005). A novel homodimeric lactose-binding lectin from the edible split gill medicinal mushroom Schizophyllum commune. Biochemical and Biophysics Research Communications, 336, 252–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Department of Science and Technology (DST), Government of India, for the financial support. The help rendered by Dr. Satheeshkumar P.K (CBST) during the preparation of the manuscript is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulochana Priya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sureshkumar, T., Priya, S. Purification of a Lectin from M. rubra Leaves Using Immobilized Metal Ion Affinity Chromatography and Its Characterization. Appl Biochem Biotechnol 168, 2257–2267 (2012). https://doi.org/10.1007/s12010-012-9934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9934-y

Keywords

Navigation