Skip to main content

Advertisement

Log in

Novel Technology Development through Thermal Drying of Encapsulated Kluyveromyces marxianus in Micro- and Nano-tubular Cellulose in Lactose Fermentation and Its Evaluation for Food Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel technology development based on the production of a low-cost starter culture for ripening of cheeses and baking is reported in the present study. The starter culture comprises thermally dried cells of Kluyveromyces marxianus encapsulated in micro- and nano-tubular cellulose. For production of a low-cost and effective biocatalyst, whey was used as raw material for biomass production and thermal drying methods (convective, conventional, and vacuum) were applied and evaluated at drying temperatures ranging from 35 to 60 °C. The effect of drying temperature of biocatalysts on fermentability of lactose and whey was evaluated. Storage stability and suitability of biocatalysts as a commercial starter cultures was also assessed and evaluated. All thermally dried biocatalysts were found to be active in lactose and whey fermentation. In all cases, there was sugar conversion ranging from 92 to 100 %, ethanol concentration of up to 1.47 % (v/v), and lactic acid concentrations ranged from 4.1 to 5.5 g/l. However, convective drying of the encapsulated cells of K. marxianus in micro- and nano-tubular cellulose was faster and a more effective drying method while drying at 42 °C appear to be the best drying temperature in terms of cell activity, ethanol, and lactic acid formation. Storage of the biocatalysts for 3 months at 4 °C proved maintenance of its activity even though fermentation times increased by 50–100 % compared with the fresh dried ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

K. marxianus :

Kluyveromyces marxianus

S. cerevisiae :

Saccharomyces cerevisiae

References

  1. Ruggeri, B., Specchia, V., & Gianetto, A. (1988). Chemical Engineering Journal, 37, B23–B30.

    Article  CAS  Google Scholar 

  2. Porro, D., Martegani, E., Ranzi, B. M., & Alberghina, L. (1992). Biotechnology and Bioengineering, 39, 799–805.

    Article  CAS  Google Scholar 

  3. Domingues, L., Lima, N., & Teixeira, J. A. (2001). Biotechnology and Bioengineering, 72, 507–514.

    Article  CAS  Google Scholar 

  4. Belem, M. A. F., & Lee, B. H. (1998). Critical Reviews in Food Science and Nutrition, 38, 565–598.

    Article  CAS  Google Scholar 

  5. Aktaş, N., Boyacı, İ. H., Mutlu, M., & Tanyolaç, A. (2006). Bioresource Technology, 97, 2252–2259.

    Article  Google Scholar 

  6. Koutinas, A. A., Papapostolou, H., Dimitrellou, D., Kopsahelis, N., Katechaki, E., Bekatorou, A., & Bosnea, L. A. (2009). Bioresource Technology, 100, 3734–3739.

    Article  CAS  Google Scholar 

  7. Plessas, S., Bosnea, L., Psarianos, C., Koutinas, A. A., Marchant, R., & Banat, I. M. (2008). Bioresource Technology, 99, 5951–5955.

    Article  CAS  Google Scholar 

  8. Sansonetti, S., Hobley, T. J., Calabrò, V., Villadsen, J., & Sin, G. (2011). Bioresource Technology, 102, 7513–7520.

    Article  CAS  Google Scholar 

  9. Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Journal of Microbiological Methods, 66, 183–193.

    Article  CAS  Google Scholar 

  10. Miyamoto-Shinohara, Y., Imaizumi, T., Sukenobe, J., Murakami, Y., Kawamura, S., & Komatsu, Y. (2000). Cryobiology, 41, 251–255.

    Article  CAS  Google Scholar 

  11. Corcoran, B. M., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2004). Journal of Applied Microbiology, 96, 1024–1039.

    Article  CAS  Google Scholar 

  12. Desmond, C., Ross, R. P., O’Callaghan, E., Fitzgerald, G., & Stanton, C. (2002). Journal of Applied Microbiology, 93, 1003–1011.

    Article  CAS  Google Scholar 

  13. Luna-Solano, G., Salgado-Cervantes, M. A., Garcia-Alvarado, M. A., & Rodriguez-Jimenes, G. (2000). Journal of Food Process Engineering, 23, 453–462.

    Article  Google Scholar 

  14. Bjerketorp, J., Håkansson, S., Belkin, S., & Jansson, J. K. (2006). Current Opinion in Biotechnology, 17, 43–49.

    Article  CAS  Google Scholar 

  15. Kudra, T., & Strumillo, C. (1998). Thermal processing of bio-materials. New York: Gordon and Breach Science Publishers.

    Book  Google Scholar 

  16. Papapostolou, H., Bosnea, L. A., Koutinas, A. A., & Kanellaki, M. (2008). Bioresource Technology, 99, 6949–6956.

    Article  CAS  Google Scholar 

  17. Papapostolou, H., Bosnea, L. A., Kanellaki, M., & Koutinas, A. A. (2007). Open Biotechnology Journal, 1, 52–58.

    CAS  Google Scholar 

  18. Koutinas, A. A., Sypsas, V., Kandylis, P., Michelis, A., Bekatorou, A., Kourkoutas, Y., Kordulis, C., Lycourghiotis, A., Banat, I. M., Nigam, P., Marchant, R., Giannouli, M., & Yianoulis, P. (2012). PLoS ONE, 7, e34350.

    Article  CAS  Google Scholar 

  19. Dimitrellou, D., Kandylis, P., Kourkoutas, Y., Koutinas, A. A., & Kanellaki, M. (2009). Food Chemistry, 115, 691–696.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios A. Koutinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papapostolou, H., Servetas, Y., Bosnea, L.A. et al. Novel Technology Development through Thermal Drying of Encapsulated Kluyveromyces marxianus in Micro- and Nano-tubular Cellulose in Lactose Fermentation and Its Evaluation for Food Production. Appl Biochem Biotechnol 168, 2148–2159 (2012). https://doi.org/10.1007/s12010-012-9924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9924-0

Keywords

Navigation