Skip to main content
Log in

Immobilization of Lipase from Grey Mullet

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Grey mullet (Mugil cephalus) lipase was isolated using para-aminobenzamidine agarose and immobilized on octyl Sepharose CL-4B (o-Sep). Immobilized grey mullet lipase (GMLi) had a 10 °C higher optimum temperature compared to the free enzyme and showed remarkable thermal stability. GMLi was most active within the pH range of 8.0–9.5 with an optimum at 8.5. Immobilization also enhanced the storage stability and reusability of the enzyme with minimal changes in efficiency during repeated batches. GMLi showed variable stabilities in various organic solvents. A signal in the amide I absorption region of the FTIR spectrum of GMLi was attributed to the protein layer on o-Sep. The surface morphology of o-Sep was visualized on a Zeiss stereomicroscope as globular-shaped beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Delorme, V., Dhouib, R., Canaan, S., Fotiadu, F., Carrière, F., & Cavalier, J.-F. (2011). Effects of surfactants on lipase structure, activity, and inhibition. Pharmaceutical Research, 28, 1831–1842.

    Article  CAS  Google Scholar 

  2. Zaks, A., & Klibanov, A. M. (1985). Enzyme-catalyzed processes in organic solvents. Proceedings of the National Academy of Sciences, 82, 3192–3196.

    Article  CAS  Google Scholar 

  3. Pogorevc, M., Stecher, H., & Faber, K. (2002). A caveat for the use of log P values for the assessment of the biocompatibility of organic solvents. Biotechnology Letters, 24, 857–860.

    Article  CAS  Google Scholar 

  4. Bastida, A., Sabuquillo, P., Armisen, P., Fernández-Lafuente, R., Huguet, J., & Guisán, J. M. (1998). A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering, 58(5), 486–493.

    Article  CAS  Google Scholar 

  5. Palomo, J. M., Ortiz, C., Fuentes, M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2004). A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Journal of Chromatography A, 1038, 267–273.

    Article  CAS  Google Scholar 

  6. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.

    Article  CAS  Google Scholar 

  7. Tufvesson, P., Törnvall, U., Carvalho, J., Karlsson, A. J., & Hatti-Kaul, R. (2011). Towards a cost-effective immobilized lipase for the synthesis of specialty chemicals. Journal of Molecular Catalysis B: Enzymatic, 68(2), 200–205.

    Article  CAS  Google Scholar 

  8. Tischer, W., & Wedekind, F. (1999). Immobilized Enzymes: Methods and Applications. Topics in Current Chemistry, 200, 96–126.

    Article  Google Scholar 

  9. Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353(16), 2885–2904.

    Article  CAS  Google Scholar 

  10. Iso, M., Chen, B., Eguchi, M., Kudo, T., & Shrestha, S. (2001). Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. Journal of Molecular Catalysis B: Enzymatic, 16, 53–58.

    Article  CAS  Google Scholar 

  11. Fjerbaek, L., Christensen, K. V., & Norddahl, B. (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering, 102(5), 1298–1315.

    Article  CAS  Google Scholar 

  12. Pencreac’h, G., & Baratti, J. C. (2001). Comparison of hydrolytic activity in water and heptane for thirty-two commercial lipase preparations. Enzyme and Microbial Technology, 28(4–5), 473–479.

    Article  Google Scholar 

  13. Kurtovic, I., Marshall, S. N., & Zhao, X. (2011). Hydrophobic immobilization of a bile salt activated lipase from Chinook salmon (Oncorhynchus tshawytscha). Journal of Molecular Catalysis B: Enzymatic, 72(3–4), 168–174.

    Article  CAS  Google Scholar 

  14. Aryee, A. N. A., Simpson, B. K., & Villalonga, R. (2007). Lipase fraction from the viscera of grey mullet (Mugil cephalus): Isolation, partial purification and some biochemical characteristics. Enzyme and Microbial Technology, 40(3), 394–402.

    Article  CAS  Google Scholar 

  15. Yang, F., Su, W.-J., B-J, L., Wu, T., Sun, L.-C., Hara, K., et al. (2009). Purification and characterization of chymotrypsins from the hepatopancreas of crucian carp (Carassius auratus). Food Chemistry, 116(4), 860–866.

    Article  CAS  Google Scholar 

  16. Sila, A., Nasri, R., Jridi, M., Balti, R., Nasri, M., & Bougatef, A. (2012). Characterisation of trypsin purified from the viscera of Tunisian barbel (Barbus callensis) and its application for recovery of carotenoproteins from shrimp wastes. Food Chemistry, 132(3), 1287–1295.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Kordel, M., Hofmann, B., Schomburg, D., & Schmid, R. (1991). Extracellular lipase of Pseudomonas sp. Strain ATCC 21808: purification, characterization, crystallization and preliminary X-ray diffraction data. Journal of Bacteriology, 173, 4836–4841.

    CAS  Google Scholar 

  19. Pencreac’h, G., Leullier, M., & Baratti, J. C. (1997). Properties of free and immobilised lipase from Burkholderia cepacia. Biotechnology and Bioengineering, 56, 181–189.

    Article  Google Scholar 

  20. Erlanger, B. F., Kokowsky, N., & Colen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics, 95, 271–278.

    Article  CAS  Google Scholar 

  21. Soumanou, M. M., & Bornscheuer, U. T. (2003). Lipase-catalyzed alcoholysis of vegetable oils. European Journal of Lipid Science and Technology, 105(11), 656–660.

    Article  CAS  Google Scholar 

  22. De-Simone, S. G., Correa-Netto, C., Antunes, O. A. C., De-Alencastro, R. B., & Silva, F. P., Jr. (2005). Biochemical and molecular modeling analysis of the ability of two p-aminobenzamidine-based sorbents to selectively purify serine proteases (fibrinogenases) from snake venoms. Journal of Chromatography B, 822(1–2), 1–9.

    Article  CAS  Google Scholar 

  23. Sörensen, M. H., Ng, J. B. S., Bergström, L., & Alberius, P. C. A. (2010). Improved enzymatic activity of Thermomyces lanuginosus lipase immobilized in a hydrophobic particulate mesoporous carrier. Journal of Colloid and Interface Science, 343(1), 359–365.

    Article  Google Scholar 

  24. Weetall, H. H. (1976). Covalent coupling methods for inorganic support materials. Methods in Enzymology, 44, 134–148.

    Article  CAS  Google Scholar 

  25. Derewenda, U., Brozowski, A. M., Lawson, D. M., & Derewenda, Z. S. (1992). Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry, 31, 1532–1541.

    Article  CAS  Google Scholar 

  26. Tiss, A., Frédéric Carrière, F., & Verger, R. (2001). Effects of gum Arabic on lipase interfacial binding and activity. Analytical Biochemistry, 294(1), 36–43.

    Article  CAS  Google Scholar 

  27. Fernandez-Lorente, G., Palomo, J. M., Cabrera, Z., Fernandez-Lafuente, R., & Guisáán, J. M. (2007). Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnology and Bioengineering, 97(2), 242–250.

    Article  CAS  Google Scholar 

  28. Blout, E. R., De Loze, C., & Asadourian, A. (1961). The deuterium exchange of water-soluble polypeptides and proteins as measured by infrared spectroscopy. Journal of the American Chemical Society, 83(8), 1895–1900.

    Article  CAS  Google Scholar 

  29. Pelton, J. T., & McLean, L. R. (2000). Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry, 277(2), 167–176.

    Article  CAS  Google Scholar 

  30. Hong, J., Xu, D., Gong, P., Yu, J., Ma, H., & Yao, S. (2008). Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels. Microporous and Mesoporous Materials, 109(1–3), 470–477.

    Article  CAS  Google Scholar 

  31. Gagnon, M. D., & Vasudevan, P. T. (2011). Effects of solvent and enzyme source on transesterification activity. Energy & Fuels, 25(10), 4669–4674.

    Article  CAS  Google Scholar 

  32. Aryee, A. N. A., Simpson, B. K., Cue, R. I., & Phillip, L. E. (2011). Enzymatic transesterification of fats and oils from animal discards to fatty acid ethyl esters for potential fuel use. Biomass and Bioenergy, 35(10), 4149–4157.

    Article  CAS  Google Scholar 

  33. Lima, V. M. G., Krieger, N., Mitchell, D. A., & Fontana, J. D. (2004). Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochemical Engineering Journal, 18, 65–71.

    Article  CAS  Google Scholar 

  34. Laane, C., Sjef, B., Kees, V., & Cees, V. (1987). Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 30(1), 81–87.

    Article  CAS  Google Scholar 

  35. Ryczkowski, J. (2007). Spectroscopic evidences of EDTA interaction with inorganic supports during the preparation of supported metal catalysts. Vibrational Spectroscopy, 43(1), 203–209.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Natural Sciences and Engineering Research Council (NSERC Discovery Grant Program) of Canada, Diana Valtierra Rodriguez for help with FTIR data acquisition, and Dr. Ashraf A. Ismail for guidance, spectral analyses, and invaluable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Simpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aryee, A.N.A., Simpson, B.K. Immobilization of Lipase from Grey Mullet. Appl Biochem Biotechnol 168, 2105–2122 (2012). https://doi.org/10.1007/s12010-012-9921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9921-3

Keywords

Navigation