Skip to main content
Log in

Pathways for Degrading TNT by Thu-Z: a Pantoea sp. Strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

2,4,6-Trinitrotoluene (TNT), an extensively used and versatile explosive, is harmful in soil and water. In the present study, four bacterial strains capable of degrading TNT have been isolated from contaminated sites and named as Thu-A, Thu-B, Thu-C, and Thu-Z. Thu-Z, which gave the highest degradation efficiency compared to the others, was assigned to the genus Pantoea according to its 16S rRNA gene. Similarities in both biochemical properties and morphology suggested that Thu-Z was a Pantoea sp. strain. Thu-Z was proved to be capable of using TNT as a sole nitrogen source by cleaving NO2 from the nitroaromatic ring by direct aromatic ring reduction. Under nitrogen-limited conditions, 96.6 % N of TNT was consumed by Thu-Z for growth, which was determined in terms of NaNO2. Trace nitro reduction metabolites such as 2,4-diamino-6-nitrotoluene (24Dam) and 2,6-diamino-4-nitrotoluene (26Dam) were identified in the presence of (NH4)2SO4. On the other hand, 4,4′,6,6′-tetranitro-2,2′-azoxytoluene (22Azo) and 2,2′,6,6′-tetranitro-4,4′-azoxytoluene (44Azo) were detected in the absence of (NH4)2SO4. These indicated the existence of a dual pathway for Thu-Z, while the direct aromatic ring reduction was predominant. Addition of a nitrogen source ((NH4)2SO4) after inoculation stimulated the growth of Thu-Z and accelerated TNT degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lewis, T. A., Newcombe, D. A., & Crawford, R. L. (2004). Journal of Environmental Management, 70, 291–307.

    Article  Google Scholar 

  2. Zou, H. F., Zhou, S. F., Hu, X., Zhang, Y. K., Lu, P. C. (1994). JPC-J. Planar Chromatogr.-Mod. TLC 7, 461-463.

    Google Scholar 

  3. Schrader, P. S., & Hess, T. F. (2004). Journal of Environmental Quality, 33(4), 1202–1209.

    Article  CAS  Google Scholar 

  4. Ibeanusi, V., Jeilani, Y., Houston, S., Doss, D., & Coley, B. (2009). Biotechnology Letters, 31, 65–69.

    Article  CAS  Google Scholar 

  5. Zarlpov, S. A., Naumov, A. V., Abdrakhmanova, J. F., Garusov, A. V., & Naumma, R. P. (2002). FEMS Microbiology Letters, 217, 213–217.

    Article  Google Scholar 

  6. Hawari, J., Beaudet, S., Halasz, A., Thiboutot, S., & Ampleman, G. (2000). Applied Microbiology and Biotechnology, 54, 605–618.

    Article  CAS  Google Scholar 

  7. Jain, M. R., Zinjarde, S. S., Deobagkar, D. D., & Deobagkar, D. N. (2004). Marine Pollution Bulletin, 49, 783–788.

    Article  CAS  Google Scholar 

  8. Held, T., Draude, G., Schmidt, F. R. J., Brokamp, A., & Reis, K. H. (1997). Environmental Technology, 18, 479–487.

    Article  CAS  Google Scholar 

  9. Schmelling, D. C., & Gray, K. A. (1995). Water Research, 29, 2651–2662.

    Article  CAS  Google Scholar 

  10. Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D., & Powers, W. L. (1997). Environmental Pollution, 97, 55–64.

    Article  CAS  Google Scholar 

  11. Arienzo, M. (2000). Chemosphere, 40, 441–448.

    Article  CAS  Google Scholar 

  12. Park, J., Comfort, S. D., Shea, P. J., & Machacek, T. A. (2004). Journal of Environmental Quality, 33, 1305–1313.

    Article  CAS  Google Scholar 

  13. Singh, J., Comfort, S. D., & Shea, P. J. (1999). Environmental Science and Technology, 33, 1488–1494.

    Article  CAS  Google Scholar 

  14. Hwang, S., Batchelor, C. J., Davis, J. L., & MacMillan, D. K. (2005). Journal Environment Science Health Part A: Toxic/Hazard Substance Environment Engineering, 40, 581–592.

    Article  CAS  Google Scholar 

  15. Saupe, A., Garvens, H. J., & Heinze, L. (1998). Chemosphere, 36, 1725–1744.

    Article  CAS  Google Scholar 

  16. Vasilyeva, G. K., Kreslavski, V. D., Oh, B. T., & Shea, P. J. (2001). Environmental Toxicology and Chemistry, 20, 965–971.

    Article  CAS  Google Scholar 

  17. Vasilyeva, G. K., Kreslavski, V. D., & Shea, P. J. (2002). Chemosphere, 47, 311–317.

    Article  CAS  Google Scholar 

  18. Rodgers, J. D., & Bunce, N. J. (2001). Environmental Science and Technology, 35, 406–410.

    Article  CAS  Google Scholar 

  19. Kulkarni, M., & Chaudhari, A. (2007). Journal of Environmental Management, 85, 496–512.

    Article  CAS  Google Scholar 

  20. Harrison, I., & Vane, C. H. (2010). Water Science and Technology, 61, 2531–2538.

    Article  CAS  Google Scholar 

  21. Parrish, F. W. (1977). Applied and Environmental Microbiology, 34, 232–233.

    CAS  Google Scholar 

  22. Bayman, P., & Radkar, G. V. (1997). International Biodeterioration and Biodegradation, 39, 45–53.

    Article  CAS  Google Scholar 

  23. Weber, R. W. S., Ridderbusch, D. C., & Anke, H. (2002). Mycological Research, 106, 336–344.

    Article  CAS  Google Scholar 

  24. Oh, K. H., & Kim, Y. J. (1998). Bulletin of Environmental Contamination and Toxicology, 61, 702–708.

    Article  Google Scholar 

  25. French, C. E., Nicklin, S., & Bruce, N. C. (1998). Applied and Environmental Microbiology, 64, 2864–2868.

    CAS  Google Scholar 

  26. De, L. M., & Craig, M. (2009). Current Microbiology, 58, 81–86.

    Article  Google Scholar 

  27. Kim, H. Y., & Song, H. G. (2000). Current Microbiology, 41, 317–320.

    Article  CAS  Google Scholar 

  28. Adrian, N. R., & Arnett, C. M. (2004). Current Microbiology, 48, 332–340.

    Article  CAS  Google Scholar 

  29. Esteve-Nunez, A., Caballero, A., & Ramos, J. L. (2001). Microbiology and Molecular Biology Reviews, 65, 335–352.

    Article  CAS  Google Scholar 

  30. Ziganshin, A. M., Naumov, A. V., Suvorova, E. S., Naumenko, E. A., & Naumova, R. P. (2007). Microbiology, 76, 676–682.

    Article  CAS  Google Scholar 

  31. Ziganshin, A. M., Gerlach, R., Borch, T., Naumov, A. V., & Naumova, R. P. (2007). Applied and Environmental Microbiology, 73, 7898–7905.

    Article  CAS  Google Scholar 

  32. Duque, E., Haidour, A., Godoy, F., & Ramos, J. L. (1993). Journal of Bacteriology, 175, 2278–2283.

    CAS  Google Scholar 

  33. Zaripov, S. A., Naumov, A. V., Nikitina, E. V., & Naumova, R. P. (2002). Microbiology, 71, 558–562.

    Article  CAS  Google Scholar 

  34. Zaripov, S. A., Naumov, A. V., Suvorova, E. S., Garusov, A. V., & Naumova, R. P. (2004). Microbiology, 73, 398–403.

    Article  CAS  Google Scholar 

  35. Borch, T., & Gerlach, R. (2004). Journal of Chromatography. A, 1022, 83–94.

    Article  CAS  Google Scholar 

  36. Nyanhongo, G. S., Erlacher, A., Schroeder, M., & Gubitz, G. A. (2006). Enzyme and Microbial Technology, 39, 1197–1204.

    Article  CAS  Google Scholar 

  37. Cai, B., Han, Y., Liu, B., Ren, Y., & Jiang, S. (2003). Letters in Applied Microbiology, 36, 272–276.

    Article  CAS  Google Scholar 

  38. Iimura, K., & Hosono, A. (1996). International Journal of Food Microbiology, 30, 243–253.

    Article  CAS  Google Scholar 

  39. Cambria, M. T., Minniti, Z., Librando, V., & Cambria, A. (2008). Applied Biochemistry and Biotechnology, 149, 1–8.

    Article  CAS  Google Scholar 

  40. Suja, E., Nancharaiah, Y. V., & Venugopalan, V. P. (2012). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-012-9594-y.

  41. Haidour, A., & Ramos, J. L. (1996). Environmental Science and Technology, 30, 2365–2370.

    Article  CAS  Google Scholar 

  42. Hua, X. F., Wang, J., Wu, Z. J., Zhang, H. X., Li, H. P., Xing, X. H., & Liu, Z. (2010). Biochemical Engineering Journal, 49, 201–206.

    Article  CAS  Google Scholar 

  43. Medrano, E. G., & Bell, A. A. (2007). Journal of Applied Microbiology, 102, 134–143.

    Article  CAS  Google Scholar 

  44. Yeung, K. F., Lee, K. M., & Woodard, R. W. (1998). Journal of Natural Products, 61, 207–211.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial supports of this work by the Doctoral Fund of Ministry of Education of China (grant no. 20100002110023) and by the Ministry of Science and Technology through 973 Project under grant no. 2009CB724702 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, L., Lu, D. & Liu, Z. Pathways for Degrading TNT by Thu-Z: a Pantoea sp. Strain. Appl Biochem Biotechnol 168, 1976–1988 (2012). https://doi.org/10.1007/s12010-012-9911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9911-5

Keywords

Navigation