Skip to main content

Advertisement

Log in

In Silico Study and Validation of Phosphotransacetylase (PTA) as a Putative Drug Target for Staphylococcus aureus by Homology-Based Modelling and Virtual Screening

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus, a Gram-positive bacterium, can cause a range of illnesses from minor skin infections to life-threatening diseases, such as bacteraemia, endocarditis, meningitis, osteomyelitis, pneumonia, toxic shock syndrome and sepsis. Due to the emergence of antibiotic resistance strains, there is a need to develop of new class of antibiotics or drug for this pathogen. The phosphotransacetylase enzyme plays an important role in the acetate metabolism and found to be essential for the survival of the S. aureus. This enzyme was evaluated as a putative drug target for S. aureus by in silico analysis. The 3D structure of the phosphotransacetylase from S. aureus was modelled, using the 1TD9 chain ‘A’ from Bacillus subtilis as a template at the resolution of 2.75 Å. The generated model has been validated by PROCHECK, WHAT IF and SuperPose. The docking was performed by the Molegro virtual docker using the ZINC database generated ligand library. The ligand library was generated within the limitation of the Lipinski rule of five. Based on the dock-score, five molecules have been subjected to ADME/TOX analysis and subjected for pharmacophore model generation. The zinc IDs of the potential inhibitors are ZINC08442078, ZINC8442200, ZINC 8442087 and ZINC 8442184 and found to be pharmacologically active antagonist of phosphotransacetylase. The molecules were evaluated as no-carcinogenic and persistent molecule by START programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carleton, H. A., Diep, B. A., Charlebois, E. D., Sensabaugh, G. F., & Perdreau-Remington, F. (2004). Community-adapted methicillin-resistant Staphylococcus aureus (MRSA): population dynamics of an expanding community reservoir of MRSA. Journal of Infectious Diseases, 190, 1730–1738.

    Article  CAS  Google Scholar 

  2. Diekema, D. J., Pfaller, M. A., & Schmitz, F. J. (2001). Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial usceptibility of isolates collected in the SENTRY Antimicrobial Surveillance Program. Clinical Infectious Diseases, 32, S114–S132.

    Article  CAS  Google Scholar 

  3. Freeman-cook, L., & Freeman-cook, K. (2006). Staphylococcus aureus infections (deadly diseases and epidemics). Philadelphia, Chelsea House Publications.

  4. King, M. D., Humphrey, B. J., Wang, Y. F., Kourbatova, E. V., Ray, S. M., & Blumberg, H. M. (2006). Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Annals of Internal Medicine, 144, 309–317.

    Google Scholar 

  5. Morya, V. K., Dewaker, V., Mecarty, S. D., & Singh, R. (2010). In silico analysis metabolic pathways for identification of putative drug targets for Staphylococcus aureus. Journal of Computer Science & Systems Biology, 3(3), 062–069.

    Article  CAS  Google Scholar 

  6. Ross, R. A., & Onderdonk, A. B. (2000). Production of toxic shock syndrome toxin 1 by Staphylococcus aureus requires both oxygen and carbon dioxide. Infection and Immunity, 68(9), 5205–5209.

    Article  CAS  Google Scholar 

  7. Yarwood, J. M., & Schlievert, P. M. (2003). Quorum sensing in Staphylococcus infections. The Journal of Clinical Investigation, 112(11), 1620–1625.

    CAS  Google Scholar 

  8. Bien, J., Sokolova, O., & Bozko, P. (2011). Characterization of virulence factors of Staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. Journal of Pathogens, 2011(601905), 13. doi:10.4061/2011/601905.

    Google Scholar 

  9. Deurenberg, R. H., & Stobberingh, E. E. (2008). The evolution of Staphylococcus aureus. Infection, Genetics and Evolution, 8(6), 747–763.

    Article  CAS  Google Scholar 

  10. Ellis, M. W., Griffith, M. E., Jorgensen, J. H., Hospenthal, D. R., Mende, K., & Patterson, J. E. (2009). Presence and molecular epidemiology of virulence factors in methicillin-resistant Staphylococcus aureusstrains colonizing and infecting soldiers. Journal of Clinical Microbiology, 47(4), 940–945.

    Article  CAS  Google Scholar 

  11. Ferry, T., Perpoint, T., Vandenesch, F., & Etienne, J. (2005). Virulence determinants in Staphylococcus aureus and their involvement in clinical syndromes. Current Infectious Disease Reports, 7, 420–428.

    Article  Google Scholar 

  12. Hogevik, H., Söderquist, B., Tung, H. S., Olaison, L., Westberg, A., Rydén, C., Tarkowski, A., & Andersson, R. (1998). Virulence factors of Staphylococcus aureus strains causing infective endocarditis—a comparison with strains from skin infections. APMIS, 106(9), 901–908.

    Article  CAS  Google Scholar 

  13. Spanu, V., Spanu, C., Virdis, S., Cossu, F., Scarano, C., & De Santis, E. P. (2012). Virulence factors and genetic variability of Staphylococcus aureus strains isolated from raw sheep’s milk cheese. International Journal of Food Microbiology, 153(1–2), 53–57.

    Article  Google Scholar 

  14. Lowy, F. D. (1998). Staphylococcus aureusinfections. The New England Journal of Medicine, 339, 520–532.

    Article  CAS  Google Scholar 

  15. Sarkar, M., Maganti, L., Ghoshal, N., & Dutta, C. (2012). In silico quest for putative drug targets in Helicobacter pylori HPAG1: molecular modeling of candidate enzymes from lipopolysaccharide biosynthesis pathway. Journal of Molecular Modelling, 18(5), 1855–1866.

    Article  CAS  Google Scholar 

  16. Perumal, D., Lim, C. S., Sakharkar, K. R., & Sakharkar, M. K. (2007). Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification. Silico Biology, 7(4–5), 453–465.

    CAS  Google Scholar 

  17. Butt, A. M., Tahir, S., Nasrullah, I., Idrees, M., Lu, J., & Tong, Y. (2012). Mycoplasma genitalium: a comparative genomics study of metabolic pathways for the identification of drug and vaccine targets. Infection, Genetics and Evolution, 12(1), 53–62.

    Article  CAS  Google Scholar 

  18. Morya, V. K., Kumari, S., & Kim, E. (2011). Imperative pathway analysis to identify the potential drug target for Aspergillus infection. International Journal of Latest Trends in Computing, 2(1), 178–182.

    Google Scholar 

  19. Morya, V. K., Kumari, S., & Kim, E. K. (2012). Virtual screening and evaluation of ketol-acid reducto-isomerase (KARI) as a putative drug target for aspergillosis. Clinical Proteomics, 9(1), 1.

    Article  Google Scholar 

  20. Dutta, A., Singh, S. K., Ghosh, P., Mukherjee, R., Mitter, S., & Bandyopadhyay, D. (2006). In silico identification of potential therapeutic targets in the human pathogen Helicobacter pylori. Silico Biology, 6(1–2), 43–47.

    CAS  Google Scholar 

  21. Singh, S., Joshi, P., & Chopade, B. A. (2011). Pathway analysis of Acinetobacter baylyi: a combined bioinformatic and genomics approach. Chemical Biology & Drug Design, 78(5), 893–905. doi:10.1111/j.1747-0285.2011.01191.x.

    Article  CAS  Google Scholar 

  22. Bologna, F. P., Campos-Bermudez, V. A., Saavedra, D. D., Andreo, C. S., & Drincovich, M. F. (2010). Characterization of Escherichia coli EutD: a phosphotransacetylase of the ethanolamine operon. Journal of Microbiology, 48(5), 629–636.

    Article  CAS  Google Scholar 

  23. Campos-Bermudez, V. A., Bologna, F. P., Andreo, C. S., & Drincovich, M. F. (2010). Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation. FEBS Journal, 277(8), 1957–1966.

    Article  CAS  Google Scholar 

  24. Dimou, M., Venieraki, A., Liakopoulos, G., & Katinakis, P. (2011). Cloning, characterization and transcriptional analysis of two phosphate acetyltransferase isoforms from Azotobacter vinelandii. Molecular Biology Reports, 38(6), 3653–3663.

    Article  CAS  Google Scholar 

  25. Xu, Q. S., Jancarik, J., Lou, Y., Kuznetsova, K., Yakunin, A. F., Yokota, H., Adams, P., Kim, R., & Kim, S. H. (2005). Crystal structures of a phosphotransacetylase from Bacillus subtilis and its complex with acetyl phosphate. Journal of Structural and Functional Genomics, 6(4), 269–279.

    Article  CAS  Google Scholar 

  26. Iyer, P. P., Lawrence, S. H., Luther, K. B., Rajashankar, K. R., Yennawar, H. P., Ferry, J. G., & Schindelin, H. (2004). Crystal structure of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophile. Structure, 12(4), 559–567.

    Article  CAS  Google Scholar 

  27. Rasche, M. E., Smith, K. S., & Ferry, G. J. (1997). Identification of cysteine and arginine residues essential for the phosphotransacetylase from Methanosarcina thermophile. Journal of Bacteriology, 179(24), 7712–7717.

    CAS  Google Scholar 

  28. Gill, S. C., & Von Hippel, P. H. (1989). Extinction coefficient. Analytical Biochemistry, 182, 319–328.

    Article  CAS  Google Scholar 

  29. Guruprasad, K., Reddy, B. V. P., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protection Engineering, 4, 155–164.

    CAS  Google Scholar 

  30. Ikai, A. J. (1980). Thermo stability and aliphatic index of globular proteins. Journal of Biochemistry, 88, 1895–1898.

    CAS  Google Scholar 

  31. Kyte, J., & Doolottle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132.

    Article  CAS  Google Scholar 

  32. Gasteiger, E. (2005). Protein identification and analysis tools on the ExPASy Server. In: J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Totowa: Humana.

  33. Geourjon, C., & Deléage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11, 681–684.

    CAS  Google Scholar 

  34. Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D. S., Poulin, B., Anvik, J., Macdonell, C., & Eisner, R. (2004). Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics, 20(4), 547–556.

    Article  CAS  Google Scholar 

  35. Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C. J., Hofmann, K., & Bairoch, A. (2002). The PROSITE database, its status in 2002. Nucleic Acids Research, 30(1), 235–238.

    Article  CAS  Google Scholar 

  36. Lambert, C., Léonard, N., De Bolle, X., & Depiereux, E. (2002). ESyPred3D: prediction of proteins 3D structures. Bioinformatics, 18(9), 1250–1256.

    Article  CAS  Google Scholar 

  37. Heinig, M., & Frishman, D. (2004). STRIDE: a web server for secondary structure assignment from known atomic coordinates of protein. Nucleic Acids Research, 32, W500–W502.

    Article  CAS  Google Scholar 

  38. Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins, 77(Suppl 9), 114–122.

    Article  CAS  Google Scholar 

  39. Maiti, R., Gary, H., Domselaar, V., Zhang, H., & Wishart, D. S. (2004). SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Research, 32, W590–W594.

    Article  CAS  Google Scholar 

  40. Laskoswki, R. A., MacArthur, M. W., Moss, D. S., & Thorton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  Google Scholar 

  41. Porter, C. T., Bartlett, G. J., & Thornton, J. M. (2004). The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Research, 32, D129–D133.

    Article  CAS  Google Scholar 

  42. Irwin, J. J., & Shoichet, B. K. (2005). ZINC—a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182.

    Article  CAS  Google Scholar 

  43. Thomsen, R., & Christensen, M. H. (2006). MolDock: a new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321.

    Article  CAS  Google Scholar 

  44. Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169.

    Article  CAS  Google Scholar 

  45. Wolber, G., Seidel, T., Bendix, F., & Langer, T. (2008). Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discovery Today, 13(1–2), 23–29.

    Article  CAS  Google Scholar 

  46. Lawrence, S. H., Luther, K. B., Schindelin, H., & Ferry, J. G. (2006). Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila. Journal of Bacteriology, 188(3), 1143–1154.

    Article  CAS  Google Scholar 

  47. Lee, M. R., Tsai, J., Baker, D., & Kollman, P. A. (2001). Molecular dynamics in the endgame of protein structure prediction. Journal of Molecular Biology, 313, 417–430.

    Article  CAS  Google Scholar 

  48. Engh, R. A., & Huber, R. (1991). Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallographica, A47, 392–400.

    CAS  Google Scholar 

  49. Vianna, C. P., & de Azevedo, W. F., Jr. (2012). Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. Journal of Molecular Modelling, 18(2), 755–764.

    Article  CAS  Google Scholar 

  50. Wermuth, C., & Langer, T. (1998). In H. Kubinyi (Ed.), Pharmacophore Identification (pp. 117–136). Leiden: Escom.

    Google Scholar 

  51. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25.

    Article  CAS  Google Scholar 

  52. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26.

    Article  CAS  Google Scholar 

  53. Morya, V. K., Yadav, S., Kim, E. K., & Yadav, D. (2012). In silico characterization of alkaline proteases from different species of Aspergillus. Applied Biochemistry and Biotechnology, 166(1), 243–257.

    Article  CAS  Google Scholar 

  54. Moraes, F. P., & de Azevedo, W. F., Jr. (2012). Targeting imidazoline site on monoamine oxidase B through molecular docking simulations. Journal of Molecular Modelling, 18, 3877–3886. doi:10.1007/s00894-012-1390-7.

    Article  CAS  Google Scholar 

  55. Heberlé, G., & De Azevedo, W. F., Jr. (2011). Bio-inspired algorithms applied to molecular docking simulations. Current Medicinal Chemistry, 18(9), 1339–1352.

    Article  Google Scholar 

  56. Dias, R., & de Azevedo, W. F., Jr. (2008). Molecular docking algorithms. Current Drug Targets, 9(12), 1040–1047.

    Article  CAS  Google Scholar 

  57. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A geometric approach to macromolecule–ligand interactions. Journal of Molecular Biology, 161(2), 269–288.

    Article  CAS  Google Scholar 

  58. DesJarlais, R. L., Seibel, G. L., Kuntz, I. D., Furth, P. S., Alvarez, J. C., Ortiz de Montellano, P. R., De Camp, D. L., Babé, L. M., & Craik, C. S. (1990). Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. Proceedings of the National Academy of Sciences of the United States of America, 87(17), 6644–6648.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (grant no. A103017). The work was also supported in part by Inha University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morya, V.K., Dewaker, V. & Kim, EK. In Silico Study and Validation of Phosphotransacetylase (PTA) as a Putative Drug Target for Staphylococcus aureus by Homology-Based Modelling and Virtual Screening. Appl Biochem Biotechnol 168, 1792–1805 (2012). https://doi.org/10.1007/s12010-012-9897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9897-z

Keywords

Navigation