Skip to main content
Log in

A Low-Temperature-Active Alkaline Pectate Lyase from Xanthomonas campestris ACCC 10048 with High Activity over a Wide pH Range

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni2+–NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0–12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K m and V max values of r-PL D for polygalacturonic acid were 4.9 g l−1 and 30.1 μmol min−1 mg−1, respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yadav, P. K., Singh, V. K., Yadav, S., Yadav, K. D., & Yadav, D. (2009). Biochemistry (Moscow), 74, 1049–1055.

    Article  CAS  Google Scholar 

  2. Fogarty, W. M., & Ward, O. P. (1974). Progress in Industrial Microbiology, 13, 59–119.

    CAS  Google Scholar 

  3. Yuan, P., Meng, K., Luo, H., Shi, P., Huang, H., Bai, Y., et al. (2011). Process Biochemistry, 46, 1921–1926.

    Article  CAS  Google Scholar 

  4. Beaulieu, C., Minsavage, G. V., Canteros, B. I., & Stall, R. E. (1991). Molecular Plant-Microbe Interactions, 4, 446–451.

    Article  CAS  Google Scholar 

  5. Walker, S. G., & Ryan, M. E. (2003). FEMS Microbiology Letters, 226, 385–390.

    Article  CAS  Google Scholar 

  6. Liao, C. H., Gaffney, T., Bradley, S., & Wong, L. (1996). Molecular Plant-Microbe Interactions, 9, 14–21.

    Article  CAS  Google Scholar 

  7. Wing, R. A., Yamaguchi, J., Larabell, S. K., Ursin, V. M., & McCormick, S. (1990). Plant Molecular Biology, 14, 7–28.

    Article  Google Scholar 

  8. Kovtunovych, G., Lar, O., Kamalova, S., Kordyum, V., Kleiner, D., & Kozyrovska, N. (1999). Plant and Soil, 215, 1–6.

    Article  CAS  Google Scholar 

  9. Liao, C. (1991). Journal of Bacteriology, 173, 4386–4393.

    CAS  Google Scholar 

  10. Magro, P., Varvaro, L., Chilosi, G., Avanzo, C., & Balestra, G. (1994). FEMS Microbiology Letters, 117, 1–6.

    Article  CAS  Google Scholar 

  11. Liao, C., Sasaki, K., Nagahashi, G., & Hicks, K. (1992). Molecular Plant-Microbe Interactions, 5, 301–308.

    Article  CAS  Google Scholar 

  12. Heikinheimo, R., Flego, D., Pirhonen, M., Karlsson, M. B., Eriksson, A., Mäe, A., et al. (1995). Molecular Plant-Microbe Interactions, 8, 207–217.

    Article  CAS  Google Scholar 

  13. Berensmeier, S., Singh, S., Meens, J., & Buchholz, K. (2004). Applied Microbiology and Biotechnology, 64, 560–567.

    Article  CAS  Google Scholar 

  14. Chotigeat, W., Duangchu, S., Wititsuwannakun, R., & Phongdara, A. (2009). Plant Physiology and Biochemistry, 47, 243–247.

    Article  CAS  Google Scholar 

  15. Hatada, Y., Kobayashi, T., & Ito, S. (2001). Extremophiles, 5, 127–133.

    Article  CAS  Google Scholar 

  16. Hoondal, G., Tiwari, R., Tewari, R., Dahiya, N., & Beg, Q. (2002). Applied Microbiology and Biotechnology, 59, 409–418.

    Article  CAS  Google Scholar 

  17. Collmer, A., Ried, J. L., & Mount, M. (1988). Methods in Enzymology, 161, 329–335.

    Article  CAS  Google Scholar 

  18. Abdel-Halim, E. S., Konczewicz, W., Zimniewska, M., AI-Deyab, S. S., & EI-Newehy, M. H. (2010). Carbohydrate Polymers, 82, 195–201.

    Article  CAS  Google Scholar 

  19. Novoa de Armas, H., Verboven, C., De Ranter, C., Desair, J., Vande Broek, A., Vanderleyden, J., et al. (2004). Acta Crystallographica Section D: Biological Crystallography, 60, 999–1007.

    Article  Google Scholar 

  20. Vorhölter, F. J., Schneiker, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O., et al. (2008). Journal of Bacteriology, 134, 33–45.

    Google Scholar 

  21. Takao, M., Nakaniwa, T., Yoshikawa, K., Terashita, T., & Sakai, T. (2000). Bioscience, Biotechnology and Biochemistry, 64, 2360–2367.

    Article  CAS  Google Scholar 

  22. Kobayashi, T., Hatada, Y., Higaki, N., Lusterio, D., Ozawa, T., Koike, K., et al. (1999). Biochimica et Biophysica Acta, 1427, 145–154.

    Article  CAS  Google Scholar 

  23. Nasuno, S., & Starr, M. (1967). Biochemistry Journal, 104, 178–185.

    CAS  Google Scholar 

  24. Klug-Santner, B. G., Schnitzhofer, W., Vršanska, M., Weber, J., Agrawal, P., Nierstrasz, V., et al. (2006). Journal of Biotechnology, 121, 390–401.

    Article  CAS  Google Scholar 

  25. Payasi, A., Sanwal, R., & Sanwal, G. G. (2008). World Journal of Microbiology and Biotechnology, 25, 1–14.

    Article  Google Scholar 

  26. Margesin, R., Fauster, V., & Fonteyne, P. A. (2005). Letters in Applied Microbiology, 40, 453–459.

    Article  CAS  Google Scholar 

  27. Ouattara, H. G., Reverchon, S., Niamke, S. L., & Nasser, W. (2011). Food Microbiology, 28, 2–8.

    Article  Google Scholar 

  28. Xiao, Z., Boyd, J., Grosse, S., Beauchemin, M., Coupe, E., & Lau, P. C. (2008). Applied Microbiology and Biotechnology, 78, 973–981.

    Article  CAS  Google Scholar 

  29. Saunders, N. F., Thomas, T., Curmi, P. M., Mattick, J. S., Kuczek, E., Slade, R., et al. (2003). Genome Research, 13, 1580–1588.

    Article  CAS  Google Scholar 

  30. Sukhumsiirchart, W., Kawanishi, S., Deesukon, W., Chansiri, K., Kawasaki, H., & Sakamoto, T. (2009). Bioscience, Biotechnology and Biochemistry, 73, 268–273.

    Article  CAS  Google Scholar 

  31. Leiros, H. K., Willassen, N. P., & Smalas, A. O. (1999). Extremophiles, 3, 205–219.

    Article  CAS  Google Scholar 

  32. Thomas, T., & Cavicchioli, R. (1998). FEBS Letters, 439, 281–286.

    Article  CAS  Google Scholar 

  33. Siddiqui, K. S., & Cavicchioli, R. (2006). Annual Review of Biochemistry, 75, 403–433.

    Article  CAS  Google Scholar 

  34. Pissavin, C., Robert-Baudouy, J., & Hugouvieux-Cotte-Pattat, N. (1998). Biochimica et Biophysica Acta, 1383, 188–196.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science and Technology Support Program (2011BADB02) and the National “948” Project (2011-G7-4) and the China Modern Agriculture Research System (CARS-42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yao.

Additional information

Peng Yuan and Kun Meng contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, P., Meng, K., Wang, Y. et al. A Low-Temperature-Active Alkaline Pectate Lyase from Xanthomonas campestris ACCC 10048 with High Activity over a Wide pH Range. Appl Biochem Biotechnol 168, 1489–1500 (2012). https://doi.org/10.1007/s12010-012-9872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9872-8

Keywords

Navigation