Skip to main content
Log in

Polyamines Induced by Osmotic Stress Protect Synechocystis sp. PCC 6803 Cells and Arginine Decarboxylase Transcripts Against UV-B Radiation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of UV-B radiation on growth and polyamines content of Synechocystis sp. PCC 6803 subjected to either NaCl or sorbitol stress was investigated. Cells could not grow in the presence of 350 mM NaCl or 500 mM sorbitol under normal white light. However, cells grown in BG11 under osmotic stress imposed by NaCl or sorbitol followed by ultraviolet-B (UV-B) irradiation for 2 h showed higher cell density than those under the same condition but no osmotic stress. The chlorophyll fluorescence parameter (F v/F m) also showed an apparent decrease upon UV-B irradiation. Intracellular polyamines increased by about 2- and 4-fold in NaCl- and sorbitol-stressed cells, respectively. When these cells were irradiated with UV-B for 1 h, a further 3-fold increase in polyamines content was detected in NaCl-stressed but not sorbitol-stressed cells. Synechocystis cells contained adc1 and adc2 genes encoding arginine decarboxylase (ADC) with only adc1 showing upregulation by NaCl or sorbitol stress. NaCl- or sorbitol-stressed cells contained about 5-fold higher level of adc1 transcript than did the unstressed cells after 1-h irradiation with UV-B, suggesting the protection of adc1 transcript by accumulated polyamines, due to NaCl or sorbitol stress, against UV-B radiation damage. ADC levels as analyzed by Western blot showed upregulation by UV-B in NaCl-stressed but not sorbitol-stressed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Incharoensakdi, A., Jantaro, S., Raksajit, W., & Mäenpää, P. (2010). In A. Méndez-Vilas (Ed.), Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (pp. 23–32). Spain: Formatex.

    Google Scholar 

  2. Willert, E. K., & Phillips, M. A. (2008). PLoS Pathogens, 4(10), e1000183.

    Article  Google Scholar 

  3. Bouchereau, A., Aziz, A., Larher, F., & Martin-Tanguy, J. (1999). Plant Science, 140, 103–125.

    Article  CAS  Google Scholar 

  4. Bagni, N., & Tassoni, A. (2001). Amino Acids, 20, 301–317.

    Article  CAS  Google Scholar 

  5. Jantaro, S., Mäenpää, P., Mulo, P., & Incharoensakdi, A. (2003). FEMS Microbiology Letters, 228, 129–135.

    Article  CAS  Google Scholar 

  6. Evans, P. T., & Malmberg, R. L. (1989). Annual Review of Plant Physiology and Plant Molecular Biology, 40, 235–269.

    Article  CAS  Google Scholar 

  7. Lütz, C., Navakoudis, E., Seidlitz, H. K., & Kotzabasis, K. (2005). Biochimica et Biophysica Acta, 1710, 24–33.

    Article  Google Scholar 

  8. Flores, H. E., & Galston, A. W. (1984). Plant Physiology, 75, 102–109.

    Article  CAS  Google Scholar 

  9. Logothetis, K., Dakanali, S., Ioannidis, N., & Kotzabasis, K. (2004). Journal of Plant Physiology, 161, 715–724.

    Article  CAS  Google Scholar 

  10. Sfichi-Duke, L., Ioannidis, N. E., & Kotzabasis, K. (2008). Planta, 228, 341–353.

    Article  CAS  Google Scholar 

  11. Cuevas, J. C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., et al. (2008). Plant Physiology, 148, 1094–1105.

    Article  CAS  Google Scholar 

  12. Tkachenko, A., Nesterova, L., & Pshenichnov, M. (2001). Archives of Microbiology, 176, 155–157.

    Article  CAS  Google Scholar 

  13. Jantaro, S., Pothipongsa, A., Khanthasuwan, S., & Incharoensakdi, A. (2011). Current Microbiology, 62, 420–426.

    Article  CAS  Google Scholar 

  14. Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., et al. (1996). DNA Research, 3, 109–136.

    Article  CAS  Google Scholar 

  15. Urano, K., Hobo, T., & Shinozaki, K. (2005). FEBS Letters, 579, 1557–1564.

    Article  CAS  Google Scholar 

  16. Perez-Amador, M. A., Leon, J., Green, P. J., & Carbonell, J. (2002). Plant Physiology, 130, 1454–1463.

    Article  CAS  Google Scholar 

  17. Hanfrey, C., Sommer, S., Mayer, M. J., Burtin, D., & Michael, A. J. (2001). The Plant Journal, 27, 551–560.

    Article  CAS  Google Scholar 

  18. Hummel, I., Bourdais, G., Gouesbet, G., Couée, I., Malmberg, R. L., & Amrani, A. E. (2004). New Phytologist, 163, 519–531.

    Article  CAS  Google Scholar 

  19. Delis, C., Dimou, M., Efrose, R. C., Flemetakis, E., Aivalakis, G., & Katinakis, P. (2005). Plant Physiology and Biochemistry, 43, 19–25.

    Article  CAS  Google Scholar 

  20. Roy, M., & Wu, R. (2001). Plant Science, 160, 869–875.

    Article  CAS  Google Scholar 

  21. Akiyama, T., & Jin, S. (2007). Journal of Plant Physiology, 164, 645–654.

    Article  CAS  Google Scholar 

  22. Ha, B. H., Cho, K. J., Choi, Y. J., Park, K. Y., & Kim, K. H. (2004). Plant Physiology and Biochemistry, 42, 307–311.

    Article  CAS  Google Scholar 

  23. Liu, J. H., Ban, Y., Wen, X.-P., Nakajima, I., & Moriguchi, T. (2009). Gene, 429, 10–17.

    Article  CAS  Google Scholar 

  24. Jantaro, S., Kidron, H., Chesnel, D., Incharoensakdi, A., Mulo, P., Salminen, T., et al. (2006). Archives of Microbiology, 184, 397–406.

    Article  CAS  Google Scholar 

  25. Rippka, R., DeReuelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Journal of General Microbiology, 111, 1–61.

    Article  Google Scholar 

  26. Redmond, J. W., & Tseng, A. (1979). Journal of Chromatography, 170, 479–481.

    Article  CAS  Google Scholar 

  27. Flores, H. E., & Galston, A. W. (1982). Plant Physiology, 69, 701–706.

    Article  CAS  Google Scholar 

  28. Mohamed, A., & Jansson, C. (1989). Plant Molecular Biology, 13, 693–700.

    Article  CAS  Google Scholar 

  29. Page, R. D. M. (1996). Computer Applications in the Biosciences, 12, 357–358.

    CAS  Google Scholar 

  30. Chattopadhyay, M. K., Tabor, C. W., & Tabor, H. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 2261–2265.

    Article  CAS  Google Scholar 

  31. Chattopadhyay, M. K., Tabor, C. W., & Tabor, H. (2006). Yeast, 23, 751–761.

    Article  CAS  Google Scholar 

  32. Groppa, M. D., & Benavides, M. P. (2008). Amino Acids, 34, 35–45.

    Article  CAS  Google Scholar 

  33. Kusano, T., Berberich, T., Tateda, C., & Takahashi, Y. (2008). Planta, 228, 367–381.

    Article  CAS  Google Scholar 

  34. Ioannidis, N. E., Cruz, J. A., Kotzabasis, K., & Kramer, D. M. (2012). PLoS One, 7(1), e29864.

    Article  CAS  Google Scholar 

  35. Ioannidis, N. E., Sfichi, L., & Kotzabasis, K. (2006). Biochimica et Biophysica Acta, 1757, 821–828.

    Article  CAS  Google Scholar 

  36. Maiale, S., Sanchez, D. H., Guirado, A., Vidal, A., & Ruiz, O. A. (2004). Journal of Plant Physiology, 161, 35–42.

    Article  CAS  Google Scholar 

  37. Tassoni, A., Franceschetti, M., & Bagni, N. (2008). Plant Physiology and Biochemistry, 46, 607–613.

    Article  CAS  Google Scholar 

  38. Urano, K., Yoshiba, Y., Nanjo, T., Ito, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2004). Biochemical and Biophysical Research Communications, 313, 369–375.

    Article  CAS  Google Scholar 

  39. Martin, W., & Herrmann, R. G. (1998). Plant Physiology, 118, 9–17.

    Article  CAS  Google Scholar 

  40. Rujan, T., & Martin, W. (2001). Trends in Genetics, 17, 113–120.

    Article  CAS  Google Scholar 

  41. Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., et al. (2002). Proceedings of the National Academy of Sciences of the United States of America, 99, 12246–12251.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Sorawit Powtongsook (Center of Excellence for Marine Biotechnology, NASTDA, Thailand) for providing the modified Qubit fluorometer. This work was supported by Chulalongkorn University (CU) Graduate School Thesis Grant to A.P. and the TRF-CHE Research Grant for New Scholar, the Thailand Research Fund (TRF) in conjunction with the Commission on Higher Education (CHE), Ministry of Education, Thailand, and Research Funds from the Faculty of Science, CU (A1B1-NS), Chulalongkorn University to S.J. The support from CHE (university staff development consortium) and National Research University Project (FW0659A) to A.I. are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saowarath Jantaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pothipongsa, A., Jantaro, S. & Incharoensakdi, A. Polyamines Induced by Osmotic Stress Protect Synechocystis sp. PCC 6803 Cells and Arginine Decarboxylase Transcripts Against UV-B Radiation. Appl Biochem Biotechnol 168, 1476–1488 (2012). https://doi.org/10.1007/s12010-012-9871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9871-9

Keywords

Navigation