Skip to main content
Log in

Use of Styrene as Sole Carbon Source by the Fungus Exophiala oligosperma: Optimization and Modeling of Biodegradation, Pathway Elucidation, and Cell Membrane Composition

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biodegradation of styrene by Exophiala sp. was tested at different initial concentrations (19.3–170.6 mg l−1), pH (2.8–8.7), and temperatures (19.8–45.1 °C), for 120 h according to a 23 full-factorial central composite design. The specific growth rate (SGR, per hour) and specific styrene utilization rate (SUR, milligrams of styrene per milligram of biomass per hour) values were used as the response variables for optimization purposes. The interactions between concentration and temperature (P = 0.022), and pH and temperature (P = 0.010) for SGR, and interactions between concentration and temperature (P = 0.012) for SUR were found to be statistically significant. The optimal values for achieving high SGR (0.15 h−1) and SUR (0.3622 mg styrene mg−1 biomass h−1) were calculated from the regression model equation. Those values are C o  = 89.1 mg l−1, pH = 5.4, and T = 31.5 °C for SGR and C o  = 69.2 mg l−1, pH = 5.5, and T = 32.4 °C for SUR. It was also observed that the Exophiala strain degrades styrene via phenylacetic acid, involving initial oxidation of the vinyl side chain. Besides, in the presence of styrene, changes in the fatty acids profile were also observed. It is hypothesized that an increasing amount of linoleic acid (18:2) may be involved in the protection of the fungus against toxic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). (1992). Toxicological profile for styrene. Atlanta, GA, USA: ATSDR.

    Google Scholar 

  2. Kennes, C., Rene, E. R., & Veiga, M. C. (2009). Journal of Chemical Technology and Biotechnology, 84, 1419–1436.

    Article  CAS  Google Scholar 

  3. Abubackar, H. N., Veiga, M. C., & Kennes, C. (2011). Biofuels Bioproducts and Biorefining (BioFPR), 5, 93–114.

    Article  CAS  Google Scholar 

  4. Sielicki, M., Focht, D. D., & Martin, J. P. (1978). Applied and Environmental Microbiology, 35, 124–128.

    CAS  Google Scholar 

  5. Hartmans, S., van der Werf, M. J., & de Bont, J. A. M. (1990). Applied and Environmental Microbiology, 56, 1347–1351.

    CAS  Google Scholar 

  6. Braun-Lüllemann, A., Majcherczyk, A., & Hüttermann, A. (1997). Applied Microbiology and Biotechnology, 47, 150–155.

    Article  Google Scholar 

  7. Kennes, C., & Veiga, M. C. (2004). Journal of Biotechnology, 30, 305–319.

    Article  Google Scholar 

  8. Estévez, E., Veiga, M. C., & Kennes, C. (2005). Journal of Industrial Microbiology and Biotechnology, 32, 33–37.

    Article  Google Scholar 

  9. Cox, H. H. J., Moerman, R. E., van Baalen, S., van Heiningen, W. N., Doddema, H. J., & Harder, W. (1997). Biotechnology and Bioengineering, 53, 259–266.

    Article  CAS  Google Scholar 

  10. Rene, E. R., Veiga, M. C., & Kennes, C. (2010). Chemosphere, 79, 221–227.

    Article  CAS  Google Scholar 

  11. Fang, J., Lovanh, N., & Alvarez, P. J. (2004). Water Research, 38, 2529–2536.

    Article  CAS  Google Scholar 

  12. Loffhagen, N., Härtig, C., & Babel, W. (2004). Bioscience, Biotechnology, and Biochemistry, 68, 317–323.

    Article  CAS  Google Scholar 

  13. Bernat, P., & Długoński, J. (2007). International Biodeterioration and Biodegradation, 60, 133–136.

    Article  CAS  Google Scholar 

  14. Słaba, M., Szewczyk, R., Bernat, P., & Długoński, J. (2009). The Science of the Total Environment, 407, 4127–4133.

    Article  Google Scholar 

  15. Bernat, P., Słaba, M., & Długoński, J. (2009). Current Microbiology, 59, 315–320.

    Article  CAS  Google Scholar 

  16. Ravikumar, K., Pakshirajan, K., Swaminathan, T., & Balu, K. (2005). Chemical Engineering Journal, 105, 131–138.

    Article  CAS  Google Scholar 

  17. Wu, S., Yu, X., Hu, Z., Zhang, L., & Chen, J. (2009). Journal of Environmental Sciences, 21, 1276–1283.

    Article  CAS  Google Scholar 

  18. Kennes, C., Cox, H. H. J., Doddema, H. J., & Harder, W. (1996). Journal of Chemical Technology and Biotechnology, 66, 300–304.

    Article  CAS  Google Scholar 

  19. Cox, H. H. J., Houtman, J. H. M., Doddema, H. J., & Harder, W. (1993). Biotechnology Letters, 15, 737–742.

    Article  CAS  Google Scholar 

  20. Fang, J., Barcelona, M. J., & Alvarez, P. J. (2000). Applied Microbiology and Biotechnology, 54, 382–389.

    Article  CAS  Google Scholar 

  21. Gajewska, E., Bernat, P., Długoński, J., & Skłodowska, M. (2012). Journal of Agronomy and Crop Science, 198, 286–294.

    Google Scholar 

  22. Rajasekaran, A. K., & Maheshwari, R. (1993). Journal of Biosciences, 8, 345–354.

    Article  Google Scholar 

  23. Mohammad, B. T., Veiga, M. C., & Kennes, C. (2007). Biotechnology and Bioengineering, 97, 1423–1438.

    Article  CAS  Google Scholar 

  24. Jin, Y., Guo, L., Veiga, M. C., & Kennes, C. (2007). Biotechnology and Bioengineering, 96, 433–443.

    Article  CAS  Google Scholar 

  25. Montes, M., Veiga, M. C., & Kennes, C. (2010). Bioresource Technology, 101, 9493–9499.

    Article  CAS  Google Scholar 

  26. Wang, C., Xi, J.-Y., Hu, H.-Y., & Wen, X.-H. (2008). Biomedical and Environmental Sciences, 21, 474–478.

    Article  CAS  Google Scholar 

  27. Estévez, E., Veiga, M. C., & Kennes, C. (2005). Applied Microbiology and Biotechnology, 67, 563–568.

    Article  Google Scholar 

  28. Yarmoff, J. J., Kawakami, Y., Yago, T., & Maruo, H. (1988). Journal of Fermentation Technology, 66, 305–312.

    Article  CAS  Google Scholar 

  29. Bhattacharya, S. S., & Banerjee, R. (2008). Chemosphere, 73, 81–85.

    Article  CAS  Google Scholar 

  30. de Hoog, G. S., Guarro, J., Gene, J., & Figueras, M. J. (2000). Atlas of clinical fungi, second (Vol. 1). Utrecht, The Netherlands: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  31. Dix, N. J., & Webster, J. (1995). Fungal ecology. London: Chapman & Hall.

    Google Scholar 

  32. Segurola, J., Allen, N. S., Edge, M., & Mahon, A. M. (1999). Progress in Organic Coating, 37, 23–37.

    Article  CAS  Google Scholar 

  33. Li, Y., Cui, F., Liu, Z., Xu, Y., & Zhao, H. (2007). Enzyme and Microbial Technology, 40, 1381–1388.

    Article  CAS  Google Scholar 

  34. Tanyildizi, M. S., Özer, D., & Elibol, M. (2005). Process Biochemistry, 40, 2291–2296.

    Article  CAS  Google Scholar 

  35. Sahoo, N. K., Pakshirajan, K., & Ghosh, P. K. (2010). International Biodeterioration and Biodegradation, 64, 474–480.

    Article  CAS  Google Scholar 

  36. Myers, R. H., Montgomery, D. C., & Anderson-Cook, M. (2009). Response surface methodology: process and product optimization using designed experiments (3rd ed.). NJ: Wiley.

    Google Scholar 

  37. Cooney, D. O. (1999). Adsorption design for wastewater treatment. New York: CRC.

    Google Scholar 

  38. Harrington, E. C. (1965). Industrial Quality Control, 21, 494–498.

    Google Scholar 

  39. Derringer, G., & Suich, R. (1980). Journal of Quality Technology, 12, 214–219.

    Google Scholar 

  40. Jung, I. G., & Park, C. H. (2005). Chemosphere, 61, 451–456.

    Article  CAS  Google Scholar 

  41. Toda, H., & Itoh, N. (2012). Journal of Bioscience and Bioengineering, 113, 12–19.

    Article  CAS  Google Scholar 

  42. Cox, H. H. J., Faber, B. W., Van Heiningen, W. N., Radhoe, H., Doddema, H. J., & Harder, W. (1996). Applied and Environmental Microbiology, 62, 1471–1474.

    CAS  Google Scholar 

  43. Dercová, K., Certık, M., Malová, A., & Sejáková, Z. (2004). International Biodeterioration and Biodegradation, 54, 251–254.

    Article  Google Scholar 

  44. Sassaki, G. L., Czelusniak, P. A., Vicente, V. A., Zanata, S. M., Souza, L. M., Gorin, P. A., et al. (2011). International Journal of Biological Macromolecules, 48, 177–182.

    Article  CAS  Google Scholar 

  45. Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Microbiological Reviews, 59, 201–222.

    CAS  Google Scholar 

  46. Certik, M., & Shimizu, S. (1999). Journal of Bioscience and Bioengineering, 87, 1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Spanish Ministry of Education and Science (Project CTQ2006-28335-E) and the Polish Ministry of Science and Higher Education (Grant no. 31/HIS/2007/02) for financial support. Eldon R. Rene thanks the Spanish Ministry of Science and Innovation for his postdoctoral research contract (JCI-2008-03109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kennes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rene, E.R., Bernat, P., Długoński, J. et al. Use of Styrene as Sole Carbon Source by the Fungus Exophiala oligosperma: Optimization and Modeling of Biodegradation, Pathway Elucidation, and Cell Membrane Composition. Appl Biochem Biotechnol 168, 1351–1371 (2012). https://doi.org/10.1007/s12010-012-9862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9862-x

Keywords

Navigation